4,4'-Diisothiocyanato-2,2'-Stilbenedisulfonic Acid (DIDS) Modulates the Activity of KCNQ1/KCNE1 Channels by an Interaction with the Central Pore Region

Bollmann, Eva; Schreiber, Julian Alexander; Ritter, Nadine; Peischard, Stefan; Ho, Huyen Tran; Wünsch, Bernhard; Strünker, Timo; Meuth, Sven; Budde, Thomas; Strutz-Seebohm, Nathalie; Seebohm, Guiscard

Research article (journal) | Peer reviewed

Abstract

Background/aims: The cardiac current IKs is carried by the KCNQ1/KCNE1-channel complex. Genetic aberrations that affect the activity of KCNQ1/KCNE1 can lead to the Long QT Syndrome 1 and 5 and, thereby, to a predisposition to sudden cardiac death. This might be prevented by pharmacological modulation of KCNQ1/KCNE1. The prototypic KCNQ1/KCNE1 activator 4,4'-Diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS) represents a candidate drug. Here, we study the mechanism of DIDS action on KCNQ1/KCNE1. Methods: Channels were expressed in Xenopus oocytes and iPSC cardiomyocytes. The role of the central S6 region was investigated by alanin-screening of KCNQ1 residues 333-338. DIDS effects were measured by TEVC and MEA. Results: DIDS-action is influenced by the presence of KCNE1 but not by KCNQ1/KCNE1 stochiometry. V334A produces a significant higher increase in current amplitude, whereas deactivation (slowdown) DIDS-sensitivity is affected by residues 334-338. Conclusion: We show that the central S6 region serves as a hub for allosteric channel activation by the drug and that DIDS shortens the pseudo QT interval in iPSC cardiomyocytes. The elucidation of the structural and mechanistic underpinnings of the DIDS action on KCNQ1/KCNE1 might allow for a targeted design of DIDS derivatives with improved potency and selectivity.

Details about the publication

JournalCellular physiology and biochemistry
Volume54
Issue2
Page range321-332
StatusPublished
Release year2020 (08/04/2020)
Language in which the publication is writtenEnglish
DOI10.33594/000000222
Link to the full texthttps://www.cellphysiolbiochem.com/Articles/000222/
KeywordsDIDS; Activator; Allosteric modulator; Molecular mechanism; KCNQ1

Authors from the University of Münster

Budde, Thomas
Institute of Physiology I (Neurophysiology)
Ho, Huyen Tran
Institut für Genetik von Herzerkrankungen (IfGH)
Meuth, Sven
Department for Neurology
Peischard, Stefan
Institut für Genetik von Herzerkrankungen (IfGH)
Ritter, Nadine
Institut für Genetik von Herzerkrankungen (IfGH)
Schreiber, Julian Alexander
Professur für Pharmazeutische Chemie (Prof. Wünsch)
Seebohm, Guiscard
Institut für Genetik von Herzerkrankungen (IfGH)
Strünker, Timo
Institute of Reproductive and Regenerative Biology
Strutz-Seebohm, Nathalie
Institut für Genetik von Herzerkrankungen (IfGH)
Wünsch, Bernhard
Professur für Pharmazeutische Chemie (Prof. Wünsch)