Oniani T, Vinnenberg L, Chaudhary R, Schreiber JA, Riske K, Williams B, Pape HC, White JA, Junker A, Seebohm G, Meuth SG, Hundehege P, Budde T, Zobeiri M
Research article (journal) | Peer reviewedMultiple sclerosis (MS) is a demyelinating disease of the central nervous system that is characterized by the progressive loss of oligodendrocytes and myelin and is associated with thalamic dysfunction. Cuprizone (CPZ)-induced general demyelination in rodents is a valuable model for studying different aspects of MS pathology. CPZ feeding is associated with the altered distribution and expression of different ion channels along neuronal somata and axons. However, it is largely unknown whether the copper chelator CPZ directly influences ion channels. Therefore, we assessed the effects of different divalent cations (copper; zinc) and trace metal chelators (EDTA; Tricine; the water-soluble derivative of CPZ, BiMPi) on hyperpolarization-activated cyclic nucleo-tide-gated (HCN) channels that are major mediators of thalamic function and pathology. In addi-tion, alterations of HCN channels induced by CPZ treatment and MS-related proinflammatory cytokines (IL-1β; IL-6; INF-α; INF-β) were characterized in C57Bl/6J mice. Thus, the hyperpolari-zation-activated inward current (Ih) was recorded in thalamocortical (TC) neurons and heterolo-gous expression systems (mHCN2 expressing HEK cells; hHCN4 expressing oocytes). A number of electrophysiological characteristics of Ih (potential of half-maximal activation (V0.5); current densi-ty; activation kinetics) were unchanged following the extracellular application of trace metals and divalent cation chelators to native neurons, cell cultures or oocytes. Mice were fed a diet containing 0.2% CPZ for 35 days, resulting in general demyelination in the brain. Withdrawal of CPZ from the diet resulted in rapid remyelination, the effects of which were assessed at three time points after stopping CPZ feeding (Day1, Day7, Day25). In TC neurons, Ih was decreased on Day1 and Day25 and revealed a transient increased availability on Day7. In addition, we challenged naive TC neurons with INF-α and IL-1β. It was found that Ih parameters were differentially altered by the ap-plication of the two cytokines to thalamic cells, while IL-1β increased the availability of HCN channels (depolarized V0.5; increased current density) and the excitability of TC neurons (depolar-ized resting membrane potential (RMP); increased the number of action potentials (APs); produced a larger voltage sag; promoted higher input resistance; increased the number of burst spikes; hy-perpolarized the AP threshold), INF-α mediated contrary effects. The effect of cytokine modulation on thalamic bursting was further assessed in horizontal slices and a computational model of slow thalamic oscillations. Here, IL-1β and INF-α increased and reduced oscillatory bursting, re-spectively. We conclude that HCN channels are not directly modulated by trace metals and diva-lent cation chelators but are subject to modulation by different MS-related cytokines.
Budde, Thomas | Institute of Physiology I (Neurophysiology) |
Hundehege, Petra | Department for Neurology |
Junker, Anna | European Institute of Molecular Imaging (EIMI) |
Oniani, Tengiz | Institute of Physiology I (Neurophysiology) |
Pape, Hans-Christian | Institute of Physiology I (Neurophysiology) |
Riske, Kathrin | European Institute of Molecular Imaging (EIMI) |
Schreiber, Julian Alexander | Professur für Pharmazeutische Chemie (Prof. Wünsch) |
Seebohm, Guiscard | Institut für Genetik von Herzerkrankungen (IfGH) |
Vinnenberg, Laura | Department for Neurology |
Zobeiri, Mehrnoush | Institute of Physiology I (Neurophysiology) |