Pflacco: Feature-Based Landscape Analysis of Continuous and Constrained Optimization Problems in Python

Prager, Raphael Patrick; Trautmann, Heike

Forschungsartikel (Zeitschrift) | Peer reviewed

Zusammenfassung

The herein proposed Python package pflacco provides a set of numerical features to characterize single-objective continuous and constrained optimization problems. Thereby, pflacco addresses two major challenges in the area optimization. Firstly, it provides the means to develop an understanding of a given problem instance, which is crucial for designing, selecting, or configuring optimization algorithms in general. Secondly, these numerical features can be utilized in the research streams of automated algorithm selection and configuration. While the majority of these landscape features is already available in the R package flacco, our Python implementation offers these tools to an even wider audience and thereby promotes research interests and novel avenues in the area of optimization.

Details zur Publikation

FachzeitschriftEvolutionary Computation
Statusakzeptiert / in Druck (unveröffentlicht)
Veröffentlichungsjahr2023
Sprache, in der die Publikation verfasst istEnglisch
Stichwörterexploratory landscape analysis; Python; fitness landscape; problem understanding; continuous optimization; automated algorithm selection

Autor*innen der Universität Münster

Prager, Raphael Patrick
Professur für Statistik und Optimierung (Prof. Trautmann) (Statistik)
Trautmann, Heike
Professur für Statistik und Optimierung (Prof. Trautmann) (Statistik)