Pflacco: Feature-Based Landscape Analysis of Continuous and Constrained Optimization Problems in Python

Prager, Raphael Patrick; Trautmann, Heike

Research article (journal) | Peer reviewed

Abstract

The herein proposed Python package pflacco provides a set of numerical features to characterize single-objective continuous and constrained optimization problems. Thereby, pflacco addresses two major challenges in the area optimization. Firstly, it provides the means to develop an understanding of a given problem instance, which is crucial for designing, selecting, or configuring optimization algorithms in general. Secondly, these numerical features can be utilized in the research streams of automated algorithm selection and configuration. While the majority of these landscape features is already available in the R package flacco, our Python implementation offers these tools to an even wider audience and thereby promotes research interests and novel avenues in the area of optimization.

Details about the publication

JournalEvolutionary Computation
Statusaccepted / in press (not yet published)
Release year2023
Language in which the publication is writtenEnglish
Keywordsexploratory landscape analysis; Python; fitness landscape; problem understanding; continuous optimization; automated algorithm selection

Authors from the University of Münster

Prager, Raphael Patrick
Data Science: Statistics and Optimization (Statistik)
Trautmann, Heike
Data Science: Statistics and Optimization (Statistik)