Automated Algorithm Selection in Single-Objective Continuous Optimization: A Comparative Study of Deep Learning and Landscape Analysis Methods

Prager, Raphael Patrick; Seiler, Moritz Vinzent; Trautmann, Heike; Kerschke, Pascal

Forschungsartikel in Sammelband (Konferenz) | Peer reviewed

Zusammenfassung

In recent years, feature-based automated algorithm selection using exploratory landscape analysis has demonstrated its great potential in single-objective continuous black-box optimization. However, feature computation is problem-specific and can be costly in terms of computational resources. This paper investigates feature-free approaches that rely on state-of-the-art deep learning techniques operating on either images or point clouds. We show that point-cloud-based strategies, in particular, are highly competitive and also substantially reduce the size of the required solver portfolio. Moreover, we highlight the effect and importance of cost-sensitive learning in automated algorithm selection models.

Details zur Publikation

Herausgeber*innenRudolph, Günter; Kononova, Anna V.; Aguirre, Hernán; Kerschke, Pascal; Ochoa, Gabriela; Tušar, Tea
BuchtitelParallel Problem Solving from Nature -- PPSN XVII
Seitenbereich3-17
VerlagSpringer International Publishing
ErscheinungsortCham
StatusVeröffentlicht
Veröffentlichungsjahr2022
Sprache, in der die Publikation verfasst istEnglisch
KonferenzInternational Conference on Parallel Problem Solving from Nature, Dortmund, Deutschland
ISBN978-3-031-14714-2
DOI10.1007/978-3-031-14714-2_1
Link zum Volltexthttps://link.springer.com/chapter/10.1007/978-3-031-14714-2_1
StichwörterAutomated Algorithm Selection; Exploratory Landscape Analysis; Deep Learning; Continuous Optimization

Autor*innen der Universität Münster

Prager, Raphael Patrick
Professur für Statistik und Optimierung (Prof. Trautmann) (Statistik)
Seiler, Moritz Vinzent
Professur für Statistik und Optimierung (Prof. Trautmann) (Statistik)
Trautmann, Heike
Professur für Statistik und Optimierung (Prof. Trautmann) (Statistik)