Artificial Social Media Campaign Creation for Benchmarking and Challenging Detection Approaches

Pohl, Janina Susanne; Assenmacher, Dennis; Seiler, Moritz Vincent; Trautmann, Heike; Grimme, Christian

Forschungsartikel in Sammelband (Konferenz) | Peer reviewed

Zusammenfassung

Social media platforms are essential for information sharing and, thus, prone to coordinated dis- and misinformation campaigns. Nevertheless, research in this area is hampered by strict data sharing regulations imposed by the platforms, resulting in a lack of benchmark data. Previous work focused on circumventing these rules by either pseudonymizing the data or sharing fragments. In this work, we will address the benchmarking crisis by presenting a methodology that can be used to create artificial campaigns out of original campaign building blocks. We conduct a proof-of-concept study using the freely available generative language model \texttt{GPT-Neo} in this context and demonstrate that the campaign patterns can flexibly be adapted to an underlying social media stream and evade state-of-the-art campaign detection approaches based on stream clustering. Thus, we not only provide a framework for artificial benchmark generation but also demonstrate the possible adversarial nature of such benchmarks for challenging and advancing current campaign detection methods.

Details zur Publikation

Herausgeber*innenAssociation for the Advancement of Artificial Intelligence (AAAI)
BuchtitelWorkshop Proceedings of the 16th International Conference on Web and Social Media (ICWSM)
Seitenbereich1-10
VerlagAAAI Press
ErscheinungsortPalo Alto, CA, USA
StatusVeröffentlicht
Veröffentlichungsjahr2022
Sprache, in der die Publikation verfasst istEnglisch
KonferenzInternational Conference on Web and Social Media, Atlanta, Vereinigte Staaten
DOI10.36190/2022.91
Link zum Volltexthttp://workshop-proceedings.icwsm.org/pdf/2022_91.pdf
StichwörterSocial Media; Campaign; Benchmarking; Augmentation

Autor*innen der Universität Münster

Grimme, Christian
Professur für Statistik und Optimierung (Prof. Trautmann) (Statistik)
Forschungsgruppe Computational Social Science and Systems Analysis (CSSSA)
Lütke-Stockdiek, Janina Susanne
Professur für Statistik und Optimierung (Prof. Trautmann) (Statistik)
Forschungsgruppe Computational Social Science and Systems Analysis (CSSSA)
Seiler, Moritz Vinzent
Professur für Statistik und Optimierung (Prof. Trautmann) (Statistik)
Trautmann, Heike
Professur für Statistik und Optimierung (Prof. Trautmann) (Statistik)