RP-Mod & RP-Crowd: Moderator- and Crowd-Annotated German News Comment Datasets

Assenmacher Dennis, Niemann Marco, Müller Kilian, Seiler Moritz V., Riehle Dennis M., Trautmann Heike

Forschungsartikel in Sammelband (Konferenz) | Peer reviewed

Zusammenfassung

Abuse and hate are penetrating social media and many comment sections of news media companies. These platform providers invest considerable efforts to moderate user-generated contributions to prevent losing readers who get appalled by inappropriate texts. This is further enforced by legislative actions, which make non-clearance of these comments a punishable action. While (semi-)automated solutions using Natural Language Processing and advanced Machine Learning techniques are getting increasingly sophisticated, the domain of abusive language detection still struggles as large non-English and well-curated datasets are scarce or not publicly available. With this work, we publish and analyse the largest annotated German abusive language comment datasets to date. In contrast to existing datasets, we achieve a high labelling standard by conducting a thorough crowd-based annotation study that complements professional moderators’ decisions, which are also included in the dataset. We compare and cross-evaluate the performance of baseline algorithms and state-of-the-art transformer-based language models, which are fine-tuned on our datasets and an existing alternative, showing the usefulness for the community.

Details zur Publikation

Herausgeber*innenVanschoren, J.; Yeung, S.
BuchtitelProceedings of the Neural Information Processing Systems Track on Datasets and Benchmarks 1 (NeurIPS Datasets and Benchmarks 2021)
Seitenbereich1-14
VerlagSelbstverlag / Eigenverlag
Erscheinungsortonline
StatusVeröffentlicht
Veröffentlichungsjahr2021
Sprache, in der die Publikation verfasst istEnglisch
KonferenzProceedings of the Neural Information Processing Systems Track on Datasets and Benchmarks 1 (NeurIPS Datasets and Benchmarks 2021), Virtual Event, Online
Link zum Volltexthttps://datasets-benchmarks-proceedings.neurips.cc/paper/2021/file/c9e1074f5b3f9fc8ea15d152add07294-Paper-round2.pdf
StichwörterAbusive Language Detection, Newspaper, Comment Moderation, Crowd Study, NLP

Autor*innen der Universität Münster

Assenmacher, Dennis
Professur für Statistik und Optimierung (Prof. Trautmann) (Statistik)
Müller, Kilian
Lehrstuhl für Wirtschaftsinformatik und Informationsmanagement (Prof. Becker) (IS)
Niemann, Marco
Lehrstuhl für Wirtschaftsinformatik und Informationsmanagement (Prof. Becker) (IS)
Riehle, Dennis
Lehrstuhl für Wirtschaftsinformatik und Informationsmanagement (Prof. Becker) (IS)
Seiler, Moritz Vinzent
Professur für Statistik und Optimierung (Prof. Trautmann) (Statistik)
Trautmann, Heike
Professur für Statistik und Optimierung (Prof. Trautmann) (Statistik)