A Collection of Deep Learning-based Feature-Free Approaches for Characterizing Single-Objective Continuous Fitness Landscapes

Seiler, Moritz Vinzent; Prager, Raphael Patrick; Kerschke, Pascal; Trautmann, Heike

Forschungsartikel in Sammelband (Konferenz) | Peer reviewed

Zusammenfassung

Exploratory Landscape Analysis is a powerful technique for numerically characterizing landscapes of single-objective continuous optimization problems. Landscape insights are crucial both for problem understanding as well as for assessing benchmark set diversity and composition. Despite the irrefutable usefulness of these features, they suffer from their own ailments and downsides. Hence, in this work we provide a collection of different approaches to characterize optimization landscapes. Similar to conventional landscape features, we require a small initial sample. However, instead of computing features based on that sample, we develop alternative representations of the original sample. These range from point clouds to 2D images and, therefore, are entirely feature-free. We demonstrate and validate our devised methods on the BBOB testbed and predict, with the help of Deep Learning, the high-level, expert-based landscape properties such as the degree of multimodality and the existence of funnel structures. The quality of our approaches is on par with methods relying on the traditional landscape features. Thereby, we provide an exciting new perspective on every research area which utilizes problem information such as problem understanding and algorithm design as well as automated algorithm configuration and selection.

Details zur Publikation

Herausgeber*innen-
BuchtitelProceedings of the Genetic and Evolutionary Computation Conference
Seitenbereich657-665
VerlagACM Press
ErscheinungsortNew York, NY, USA
StatusVeröffentlicht
Veröffentlichungsjahr2022
Sprache, in der die Publikation verfasst istEnglisch
KonferenzGenetic and Evolutionary Computation Conference '22, Boston, Massachusetts, Vereinigte Staaten
ISBN9781450392372
DOI10.1145/3512290.3528834
StichwörterDeep Learning; Fitness Landscape; Exploratory Landscape Analysis; Continuous Black-Box Optimization

Autor*innen der Universität Münster

Prager, Raphael Patrick
Professur für Statistik und Optimierung (Prof. Trautmann) (Statistik)
Seiler, Moritz Vinzent
Professur für Statistik und Optimierung (Prof. Trautmann) (Statistik)
Trautmann, Heike
Professur für Statistik und Optimierung (Prof. Trautmann) (Statistik)