Boosted Trees on a Diet: Compact Models for Resource-Constrained DevicesOpen Access

Herrmann, Nina; Stenkamp, Jan; Karic, Benjamin; Oehmke, Stefan; Gieseke, Fabian

Forschungsartikel in Online-Sammlung (Konferenz) | Peer reviewed

Zusammenfassung

Deploying machine learning models on compute-constrained devices has become a key building block of modern IoT applications. In this work, we present a compression scheme for boosted decision trees, addressing the growing need for lightweight machine learning models. Specifically, we provide techniques for training compact boosted decision tree ensembles that exhibit a reduced memory footprint by rewarding, among other things, the reuse of features and thresholds during training. Our experimental evaluation shows that models achieved the same performance with a compression ratio of 4–16x compared to LightGBM models using an adapted training process and an alternative memory layout. Once deployed, the corresponding IoT devices can operate independently of constant communication or external energy supply, and, thus, autonomously, requiring only minimal computing power and energy. This capability opens the door to a wide range of IoT applications, including remote monitoring, edge analytics, and real-time decision making in isolated or power-limited environments.

Details zur Publikation

Name des RepositoriumsOpenReview
Herausgeber*innenICLR
BuchtitelThe Fourteenth International Conference on Learning Representations
Artikelnummer12800
Statusakzeptiert / in Druck (unveröffentlicht)
Veröffentlichungsjahr2026
Sprache, in der die Publikation verfasst istEnglisch
KonferenzThe Fourteenth International Conference on Learning Representations, April 23-27, 2026, Rio de Janeiro, Brasilien
Link zum Volltexthttps://openreview.net/forum?id=batDcksZsh
StichwörterTinyML, Boosting, Decision Trees, Microcontrollers, IoT

Autor*innen der Universität Münster

Gieseke, Fabian
Lehrstuhl für Maschinelles Lernen und Data Engineering (Prof. Gieseke) (MLDE)
Herrmann, Nina
Lehrstuhl für Maschinelles Lernen und Data Engineering (Prof. Gieseke) (MLDE)
Karic, Benjamin
Professur für Geoinformatik (Prof. Schwering) (SIL)
Stenkamp, Jan
Lehrstuhl für Maschinelles Lernen und Data Engineering (Prof. Gieseke) (MLDE)