Phosphorylation of TRIM28 enhances the expression of IFN-ß and pro inflammatory cytokines during HPAIV infection of human lung epithelial cells

Krischuns Tim, Günl Franziska, Henschel Lea, Binder Marco, Willemsen Joschka, Schloer Sebastian, Rescher Ursula, Gerlt Vanessa, Zimmer Gert, Nordhoff Carolin, Ludwig Stephan, Brunotte Linda

Research article (journal) | Peer reviewed

Abstract

Human infection with highly pathogenic avian influenza viruses (HPAIV) is often associated with severe tissue damage due to hyperinduction of interferons and proinflammatory cytokines. The reasons for this excessive cytokine expression are still incompletely understood, which has hampered the development of efficient immunomodulatory treatment options. The host protein TRIM28 associates to the promoter regions of over 13000 genes and is recognized as a genomic corepressor and negative immune regulator. TRIM28 corepressor activity is regulated by post-translational modification, specifically phosphorylation of S473, which modulates binding of TRIM28 to the heterochromatin-binding protein HP1. Here, we identified TRIM28 as a key immune regulator leading to increased IFN-β and proinflammatory cytokine levels during infection with HPAIV. Using influenza A virus strains of the subtype H1N1 as well as the HPAIV subtypes H7N7, H7N9 and H5N1, we could demonstrate that strain-specific phosphorylation of TRIM28 S473 is induced by a signaling cascade constituted of PKR, p38 MAPK and MSK1 in response to RIG-I independent sensing of viral RNA. Furthermore, using chemical inhibitors as well as knockout cell lines, our results suggest that phosphorylation of S473 facilitates a functional switch leading to increased levels of IFN-β, IL-6 and IL-8. In summary, we have identified TRIM28 as a critical factor controlling excessive expression of type I IFNs as well as proinflammatory cytokines during infection with H5N1, H7N7 and H7N9 HPAIV. In addition, our data indicate a novel mechanism of PKR-mediated IFN-β expression, which could lay the ground for novel treatment options aiming at rebalancing dysregulated immune responses during severe HPAIV infection.

Details about the publication

JournalFrontiers in immunology (Front Immunol)
VolumeVolume 9
StatusPublished
Release year2018 (28/09/2018)
Language in which the publication is writtenEnglish
DOI10.3389/fimmu.2018.02229
KeywordsInfluenza; TRIM28; KAP1; TIF1-beta; innate immunity; IFN-β; RIG-I; PKR

Authors from the University of Münster

Brunotte, Linda
Institute of Molecular Virology
Gerlt, Vanessa
Professur für Molekulare Mikrobiologie und Biotechnologie (Prof. Steinbüchel)
Günl, Franziska
Institute of Molecular Virology
Krischuns, Tim
Institute of Molecular Virology
Ludwig, Stephan
Institute of Molecular Virology
Nordhoff, Carolin
Institute of Molecular Virology
Rescher, Ursula
Institute of Medical Biochemistry
Schloer, Sebastian Maximilian
Institute of Medical Biochemistry