Bayesian semiparametric multivariate stochastic volatility with application

Danielova-Zaharieva Martina, Trede Mark, Wilfling Bernd

Research article (journal) | Peer reviewed

Abstract

In this article, we establish a Cholesky-type multivariate stochastic volatility estimation framework, in which we let the innovation vector follow a Dirichlet process mixture (DPM), thus enabling us to model highly flexible return distributions. The Cholesky decomposition allows parallel univariate process modeling and creates potential for estimating high-dimensional specifications. We use Markov chain Monte Carlo methods for posterior simulation and predictive density computation. We apply our framework to a five-dimensional stock-return data set and analyze international stock-market co-movements among the largest stock markets. The empirical results show that our DPM modeling of the innovation vector yields substantial gains in out-of-sample density forecast accuracy when compared with the prevalent benchmark models.

Details about the publication

JournalEconometric Reviews
Volume39
Issue9
Page range947-970
StatusPublished
Release year2020 (09/10/2020)
Language in which the publication is writtenEnglish
DOI10.1080/07474938.2020.1761152
Link to the full texthttps://doi.org/10.1080/07474938.2020.1761152
KeywordsBayesian nonparametrics; Dirichlet process mixture; Markov-chain Monte Carlo; stock-market co-movements

Authors from the University of Münster

Trede, Mark
Professur für VWL, Ökonometrie/Wirtschaftsstatistik (Prof. Trede)
Wilfling, Bernd
Professur für Volkswirtschaftslehre, empirische Wirtschaftsforschung (Prof. Wilfling)
Zaharieva, Martina
Professur für Volkswirtschaftslehre, empirische Wirtschaftsforschung (Prof. Wilfling)