Bayesian semiparametric multivariate stochastic volatility with application

Danielova-Zaharieva Martina, Trede Mark, Wilfling Bernd

Forschungsartikel (Zeitschrift) | Peer reviewed

Zusammenfassung

In this article, we establish a Cholesky-type multivariate stochastic volatility estimation framework, in which we let the innovation vector follow a Dirichlet process mixture (DPM), thus enabling us to model highly flexible return distributions. The Cholesky decomposition allows parallel univariate process modeling and creates potential for estimating high-dimensional specifications. We use Markov chain Monte Carlo methods for posterior simulation and predictive density computation. We apply our framework to a five-dimensional stock-return data set and analyze international stock-market co-movements among the largest stock markets. The empirical results show that our DPM modeling of the innovation vector yields substantial gains in out-of-sample density forecast accuracy when compared with the prevalent benchmark models.

Details zur Publikation

FachzeitschriftEconometric Reviews
Jahrgang / Bandnr. / Volume39
Ausgabe / Heftnr. / Issue9
Seitenbereich947-970
StatusVeröffentlicht
Veröffentlichungsjahr2020 (09.10.2020)
Sprache, in der die Publikation verfasst istEnglisch
DOI10.1080/07474938.2020.1761152
Link zum Volltexthttps://doi.org/10.1080/07474938.2020.1761152
StichwörterBayesian nonparametrics; Dirichlet process mixture; Markov-chain Monte Carlo; stock-market co-movements

Autor*innen der Universität Münster

Trede, Mark
Professur für VWL, Ökonometrie/Wirtschaftsstatistik (Prof. Trede)
Wilfling, Bernd
Professur für Volkswirtschaftslehre, empirische Wirtschaftsforschung (Prof. Wilfling)
Zaharieva, Martina
Professur für Volkswirtschaftslehre, empirische Wirtschaftsforschung (Prof. Wilfling)