Scholbach J.
Research article (journal) | Peer reviewedWe show that the constructions done in part I generalize their classical counterparts: firstly, the classical Beilinson regulator is induced by the abstract Chern class map from BGL to the Deligne cohomology spectrum. Secondly, Arakelov motivic cohomology is a generalization of arithmetic K-theory and arithmetic Chow groups. For example, this implies a decomposition of higher arithmetic K-groups in its Adams eigenspaces. Finally, we give a conceptual explanation of the height pairing: it is the natural pairing of motivic homology and Arakelov motivic cohomology.
Scholbach, Jakob | Professorship of Arithmetic Geometry and Representation Theory (Prof. Deninger) |