Arakelov motivic cohomology II

Scholbach J.

Forschungsartikel (Zeitschrift) | Peer reviewed

Zusammenfassung

We show that the constructions done in part I generalize their classical counterparts: firstly, the classical Beilinson regulator is induced by the abstract Chern class map from BGL to the Deligne cohomology spectrum. Secondly, Arakelov motivic cohomology is a generalization of arithmetic K-theory and arithmetic Chow groups. For example, this implies a decomposition of higher arithmetic K-groups in its Adams eigenspaces. Finally, we give a conceptual explanation of the height pairing: it is the natural pairing of motivic homology and Arakelov motivic cohomology.

Details zur Publikation

FachzeitschriftJournal of Algebraic Geometry
Jahrgang / Bandnr. / Volume24
Ausgabe / Heftnr. / Issue4
Seitenbereich755-786
StatusVeröffentlicht
Veröffentlichungsjahr2015
Sprache, in der die Publikation verfasst istEnglisch
DOI10.1090/jag/647
Link zum Volltexthttp://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=84937841154&origin=inward

Autor*innen der Universität Münster

Scholbach, Jakob
Professur für Arithmetische Geometrie (Prof. Deninger)