Linking and closed orbits

Suhr S., Zehmisch K.

Research article (journal) | Peer reviewed

Abstract

We show that the Lagrangian of classical mechanics on a Riemannian manifold of bounded geometry carries a periodic solution of motion with prescribed energy, provided the potential satisfies an asymptotic growth condition, changes sign, and the negative set of the potential is non-trivial in the relative homology.

Details about the publication

JournalAbhandlungen aus dem Mathematischen Seminar der Universität Hamburg
Volume86
Issuenull
Page range133-150
StatusPublished
Release year2016
Language in which the publication is writtenEnglish
DOI10.1007/s12188-016-0118-5
Link to the full texthttp://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=84954143342&origin=inward
KeywordsBounded geometry; Lagrangian mechanics; Linking argument; Non-compact energy surface; Periodic orbits

Authors from the University of Münster

Zehmisch, Kai
Professur für Differentialgeometrie/Geometrische Analysis (Prof. Zehmisch)