Bayesian semiparameric multivariate stochastic volatility with an application to international volatility co-movements

Danielova Zaharieva Martina, Trede Mark, Wilfling Bernd

Working paper | Peer reviewed

Abstract

In this paper, we establish a Cholesky-type multivariate stochastic volatility estimation framework, in which we let the innovation vector follow a Dirichlet process mixture, thus enabling us to model highly flexible return distributions. The Cholesky decomposition allows parallel univariate process modeling and creates potential for estimating highly dimensional specifications. We use Markov Chain Monte Carlo methods for posterior simulation and predictive density computation. We apply our framework to a five-dimensional stock-return data set and analyze international volatility co-movements among the largest stock markets.

Details about the publication

Place of publicationUniversity of Muenster
Title of seriesCQE-Working-Papers
Volume of series62/2017
StatusPublished
Release year2017
Language in which the publication is writtenEnglish
KeywordsBayesian nonparametrics; Markov Chain Monte Carlo; Dirichlet process mixture; multivariate stochastic volatility; volatility co-movements

Authors from the University of Münster

Trede, Mark
Professur für VWL, Ökonometrie/Wirtschaftsstatistik (Prof. Trede)
Wilfling, Bernd
Professur für Volkswirtschaftslehre, empirische Wirtschaftsforschung (Prof. Wilfling)
Zaharieva, Martina
Professur für Volkswirtschaftslehre, empirische Wirtschaftsforschung (Prof. Wilfling)