Bayesian semiparameric multivariate stochastic volatility with an application to international volatility co-movements

Danielova Zaharieva Martina, Trede Mark, Wilfling Bernd

Arbeitspapier / Working Paper | Peer reviewed

Zusammenfassung

In this paper, we establish a Cholesky-type multivariate stochastic volatility estimation framework, in which we let the innovation vector follow a Dirichlet process mixture, thus enabling us to model highly flexible return distributions. The Cholesky decomposition allows parallel univariate process modeling and creates potential for estimating highly dimensional specifications. We use Markov Chain Monte Carlo methods for posterior simulation and predictive density computation. We apply our framework to a five-dimensional stock-return data set and analyze international volatility co-movements among the largest stock markets.

Details zur Publikation

ErscheinungsortUniversity of Muenster
Titel der ReiheCQE-Working-Papers
Nr. in Reihe62/2017
StatusVeröffentlicht
Veröffentlichungsjahr2017
Sprache, in der die Publikation verfasst istEnglisch
StichwörterBayesian nonparametrics; Markov Chain Monte Carlo; Dirichlet process mixture; multivariate stochastic volatility; volatility co-movements

Autor*innen der Universität Münster

Trede, Mark
Professur für VWL, Ökonometrie/Wirtschaftsstatistik (Prof. Trede)
Wilfling, Bernd
Professur für Volkswirtschaftslehre, empirische Wirtschaftsforschung (Prof. Wilfling)
Zaharieva, Martina
Professur für Volkswirtschaftslehre, empirische Wirtschaftsforschung (Prof. Wilfling)