A redox-dependent thiol-switch and a Ca2+ binding site within the hinge region hierarchically depend on each other in α7β1 integrin regulation

Caliandro, Michele F.; Schmalbein, Felix; Todesca, Luca Matteo; Mörgelin, Matthias; Rezaei, Maryam; Meißner, Juliane; Siepe, Isabel; Grosche, Julius; Schwab, Albrecht; Eble, Johannes A.

Research article (journal) | Peer reviewed

Abstract

Integrin-mediated cell contacts with the extracellular matrix (ECM) are essential for cellular adhesion, force transmission, and migration. Several effectors, such as divalent cations and redox-active compounds, regulate ligand binding activities of integrins and influence their cellular functions. To study the role of the Ca2+ binding site within the hinge region of the integrin α7 subunit, we genetically abrogated it in the α7hiΔCa mutant. This mutant folded correctly, associated with the β1 subunit and was exposed on the cell surface, but showed reduced ligand binding and weaker cell adhesion to laminin-111. Thus, it resembles the α7hiΔSS mutant, in which the redox-regulated pair of cysteines, closeby to the Ca2+ binding site within the hinge, was abrogated. Comparing both mutants in adhesion strength and cell migration revealed that both Ca2+ complexation and redox-regulation within the hinge interdepend on each other. Moreover, protein-chemical analyses of soluble integrin ectodomains containing the same α7 hinge mutations suggest that integrin activation via the subunit α hinge is primed by the formation of the cysteine pair–based crosslinkage. Then, this allows Ca2+ complexation within the hinge, which is another essential step for integrin activation and ligand binding. Thus, the α hinge is an allosteric integrin regulation site, in which both effectors, Ca2+ and redox-active compounds, synergistically and hierarchically induce far-ranging conformational changes, such as the extension of the integrin ectodomain, resulting in integrin activation of ECM ligand binding and altered integrin-mediated cell functions.

Details about the publication

JournalFree Radical Biology and Medicine
Volume187
Page range38-49
StatusPublished
Release year2022
Language in which the publication is writtenEnglish
DOI10.1016/j.freeradbiomed.2022.05.013
KeywordsAdhesion force; Ca2+ complexation; Cell migration; Integrin; Integrin conformation; Redox-regulation

Authors from the University of Münster

Caliandro, Michele Fabrizio
Institute of Physiological Chemistry and Pathobiochemistry
Eble, Johannes
Institute of Physiological Chemistry and Pathobiochemistry
Grosche, Julius
Institute of Physiological Chemistry and Pathobiochemistry
Meißner, Juliane
Institute of Physiological Chemistry and Pathobiochemistry
Rezaei, Maryam
Institute of Physiological Chemistry and Pathobiochemistry
Schwab, Albrecht
Institute of Physiology II
Siepe, Isabel
Institute of Physiological Chemistry and Pathobiochemistry
Todesca, Luca Matteo
Institute of Physiology II