We study C*-algebras constructed from locally compact (semi)groups or group actions, by means of topological invariants such as their K-theory groups. One major tool for this is given by (confirmed cases of) the Baum-Connes conjecture. Known counterexamples to the Baum-Connes conjecture involve groups (Gromov's monster groups) that admit coarse embeddings of expanders. We will study a new formulation of the conjecture that avoids the existing counterexamples, and we will study the relation between the coarse geometry of expanders and rigidity properties for groups and operator algebras.
Echterhoff, Siegfried | Professur für Funktionalanalysis (Prof. Echterhoff) |
Winter, Wilhelm | Professur für Theoretische Mathematik (Prof. Winter) |
Echterhoff, Siegfried | Professur für Funktionalanalysis (Prof. Echterhoff) |
Winter, Wilhelm | Professur für Theoretische Mathematik (Prof. Winter) |
Bartels, Arthur | Professur für Theoretische Mathematik (Prof. Bartels) |
Cuntz, Joachim | Professur für Theoretische Mathematik (Prof. Cuntz) |
Lück, Wolfgang | Mathematical Institute |
Paravicini, Walther | Professur für Mathematik und ihre Hochschuldidaktik (Prof. Paravicini) |
Spakula, Jan | Mathematical Institute |
Voigt, Christian | Mathematical Institute |