We study C*-algebras constructed from locally compact (semi)groups or group actions, by means of topological invariants such as their K-theory groups. One major tool for this is given by (confirmed cases of) the Baum-Connes conjecture. Known counterexamples to the Baum-Connes conjecture involve groups (Gromov's monster groups) that admit coarse embeddings of expanders. We will study a new formulation of the conjecture that avoids the existing counterexamples, and we will study the relation between the coarse geometry of expanders and rigidity properties for groups and operator algebras.
| Echterhoff, Siegfried | Professur für Funktionalanalysis (Prof. Echterhoff) |
| Winter, Wilhelm | Professur für Theoretische Mathematik (Prof. Winter) |
| Echterhoff, Siegfried | Professur für Funktionalanalysis (Prof. Echterhoff) |
| Winter, Wilhelm | Professur für Theoretische Mathematik (Prof. Winter) |
| Bartels, Arthur | Professur für Theoretische Mathematik (Prof. Bartels) |
| Cuntz, Joachim | Professur für Theoretische Mathematik (Prof. Cuntz) |
| Lück, Wolfgang | Mathematical Institute |
| Paravicini, Walther | Professur für Mathematik und ihre Hochschuldidaktik (Prof. Paravicini) |
| Spakula, Jan | Mathematical Institute |
| Voigt, Christian | Mathematical Institute |