In this project we study algebraic K-theory, L-theory and applications thereof to manifolds and automorphisms of manifolds. To understand non-simply connected manifolds we study the K-and L-theory of group rings via the Farrell-Jones assembly map. We extend the context of the Farrell-Jones Conjecture, for example to Hecke algebras of reductive p-adic groups. We analyze the smooth structure space of manifolds in terms of L-theory and algebraic K-theory extending results of Weiss-Williams for topological manifolds.
| Bartels, Arthur | Professur für Theoretische Mathematik (Prof. Bartels) |
| Lück, Wolfgang | Mathematical Institute |
| Lück, Wolfgang | Mathematical Institute |
| Joachim, Michael | Professur für Theoretische Mathematik (Prof. Bartels) |
| Kasprowski, Daniel | Mathematical Institute |
| Macko, Tibor | Mathematical Institute |
| Mole, Adam | Mathematical Institute |
| Sauer, Roman | Mathematical Institute |
| Steimle, Wolfgang | Mathematical Institute |
| Wegner, Christian | Mathematical Institute |
| Winges, Christoph | Professur für Theoretische Mathematik (Prof. Bartels) |