CRC TRR 191 C05 - Modular forms and Gromov-Witten theory

Basic data for this project

Type of projectSubproject in DFG-joint project hosted outside University of Münster
Duration at the University of Münster01/01/2017 - 31/12/2017 | 1st Funding period

Description

We will provide a theory of polyfolds and abstract perturbations for holomorphic discs. Applications make it possible to prove instances of the Weinstein conjecture and to answer fillability questions for large classes of contact manifolds. Connections to number-theoretic concepts will be drawn via the study of Gromov-Witten invariants. The aim is to investigate whether generating series of Gromov-Witten invariants are Fourier expansions of certain modular forms. This will help us to detect finer structures of Gromov-Witten invariants for non-Kähler manifolds.

KeywordsSymplektische Strukturen; Geometrie; Algebra; Dynamik
Website of the projecthttp://www.mi.uni-koeln.de/CRC-TRR191
Funding identifierTRR 191/1
Funder / funding scheme
  • DFG - Collaborative Research Centre (SFB)

Project management at the University of Münster

Zehmisch, Kai
Professur für Differentialgeometrie/Geometrische Analysis (Prof. Zehmisch)

Applicants from the University of Münster

Zehmisch, Kai
Professur für Differentialgeometrie/Geometrische Analysis (Prof. Zehmisch)

Project partners outside the University of Münster

  • Ruhr University Bochum (RUB)Germany
  • University of Cologne (UzK)Germany

Coordinating organisations outside the University of Münster

  • University of Cologne (UzK)Germany