CRC 1442 - A02: Moduli spaces of p-adic Galois representations

Basic data for this project

Type of projectSubproject in DFG-joint project hosted at University of Münster
Duration at the University of Münster01/07/2020 - 30/06/2024 | 1st Funding period

Description

p-adic Galois representations in finite Zp-modules are equivalent to (phi,Gamma)-modules for Qp. In this project, we develop the theory of (phi,Gamma)-modules further in the direction of finite extensions of Qp and their function field analogues. We will also use (phi,Gamma)-modules to construct moduli spaces of p-adic Galois representations. We aim to decompose special fibres on these moduli spaces into cycles in a way that mirrors multiplicity formulas in representation theory.

KeywordsArithmetic Geometry; Representation Theory; Mathematics
Website of the projecthttps://www.uni-muenster.de/MathematicsMuenster/CRC-Geometry/research/projects/a02.html
DFG-Gepris-IDhttps://gepris.dfg.de/gepris/projekt/444016194
Funding identifierSFB 1442/1, A02 | DFG project number: 427320536
Funder / funding scheme
  • DFG - Collaborative Research Centre (SFB)

Project management at the University of Münster

Hartl, Urs
Professur für Arithmetische Geometrie (Prof. Hartl)
Hellmann, Eugen
Professorship for theoretical mathematics (Prof. Hellmann)
Schneider, Peter
Professorship for theoretical arithmetic (Prof. Schneider)

Applicants from the University of Münster

Hartl, Urs
Professur für Arithmetische Geometrie (Prof. Hartl)
Hellmann, Eugen
Professorship for theoretical mathematics (Prof. Hellmann)
Schneider, Peter
Professorship for theoretical arithmetic (Prof. Schneider)