A two level contagion process and its deterministic McKendrick limit with relevance for the Covid epidemic

Luckhaus, Stephan; Stevens, Angela

Forschungsartikel (Zeitschrift) | Peer reviewed

Zusammenfassung

We introduce a stochastic epidemiological model, where two infection scenarios alternate. The first is infection within separate groups of finite size, the second is infection at meeting places of finite capacity, where individuals meet randomly. This can be thought of as an epidemic, where e.g. members of households regularly use public transport. For this model we derive the hydrodynamic limit: a McKendrick system with polynomial infections force.

Details zur Publikation

FachzeitschriftEnsaios Matemáticos
Jahrgang / Bandnr. / Volume38
Seitenbereich343-358
StatusVeröffentlicht
Veröffentlichungsjahr2023
Sprache, in der die Publikation verfasst istEnglisch
DOI10.21711/217504322023/em3813
Link zum Volltexthttps://ensaios.sbm.org.br/wp-content/uploads/sites/8/sites/8/2023/07/EM_38_luckhaus_stevens.pdf
StichwörterJump processes on general state spaces; Interacting particle systems in time-dependent statistical mechanics; Epidemiology

Autor*innen der Universität Münster

Stevens, Angela
Professur für Angewandte Analysis (Prof. Stevens)