Korff M, Chaudhary A, Li Y, Zhou X, Zhao C, Rong J, Chen J, Xiao Z, Elghazawy NH, Sippl W, Davenport AT, Daunais JB, Wang L, Abate C, Ahmed H, Crowe R, Schmidt TJ, Liang SH, Ametamey SM, Wünsch B, Haider A
Forschungsartikel (Zeitschrift) | Peer reviewedGluN2B subunit-containing N-methyl-d-aspartate (NMDA) receptors have been implicated in various neurological disorders. Nonetheless, a validated fluorine-18 labeled positron emission tomography (PET) ligand for GluN2B imaging in the living human brain is currently lacking. The aim of this study was to develop a novel synthetic approach that allows an enantiomerically pure radiosynthesis of the previously reported PET radioligands (R)-[18F]OF-NB1 and (S)-[18F]OF-NB1 as well as to assess their in vitro and in vivo performance characteristics for imaging the GluN2B subunit-containing NMDA receptor in rodents. A novel synthetic approach was successfully developed, which allows for the enantiomerically pure radiosynthesis of (R)-[18F]OF-NB1 and (S)-[18F]OF-NB1 and the translation of the probe to the clinic. While both enantiomers were selective over sigma2 receptors in vitro and in vivo, (R)-[18F]OF-NB1 showed superior GluN2B subunit specificity by in vitro autoradiography and higher volumes of distribution in the rodent brain by small animal PET studies.
Korff, Marvin | Professur für Pharmazeutische Chemie (Prof. Wünsch) |
Schmidt, Thomas | Professur für Pharmazeutische Biologie und Phytochemie (Prof. Schmidt) |
Wünsch, Bernhard | Professur für Pharmazeutische Chemie (Prof. Wünsch) |