Model order reduction of an ultraweak and optimally stable variational formulation for parametrized reactive transport problems

Engwer, Christian; Ohlberger, Mario; Renelt, Lukas

Forschungsartikel (Zeitschrift) | Peer reviewed

Zusammenfassung

This contribution introduces a model order reduction approach for an advection-reaction problem with a parametrized reaction function. The underlying discretization uses an ultraweak formulation with an L2-like trial space and an 'optimal' test space as introduced by Demkowicz et al. This ensures the stability of the discretization and in addition allows for a symmetric reformulation of the problem in terms of a dual solution which can also be interpreted as the normal equations of an adjoint least-squares problem. Classic model order reduction techniques can then be applied to the space of dual solutions which also immediately gives a reduced primal space. We show that the necessary computations do not require the reconstruction of any primal solutions and can instead be performed entirely on the space of dual solutions. We prove exponential convergence of the Kolmogorov N-width and show that a greedy algorithm produces quasi-optimal approximation spaces for both the primal and the dual solution space. Numerical experiments based on the benchmark problem of a catalytic filter confirm the applicability of the proposed method.

Details zur Publikation

FachzeitschriftSIAM Journal on Scientific Computing (SIAM J. Sci. Comput.)
Jahrgang / Bandnr. / Volume46
Ausgabe / Heftnr. / Issue5
SeitenbereichA3205-A3229
StatusVeröffentlicht
Veröffentlichungsjahr2024 (08.10.2024)
Sprache, in der die Publikation verfasst istEnglisch
DOI10.1137/23M1613402
Link zum Volltexthttps://epubs.siam.org/doi/full/10.1137/23M1613402
Stichwörterreactive transport; model order reduction; optimal stability; ultraweak formulations

Autor*innen der Universität Münster

Engwer, Christian
Professur für Anwendungen von partiellen Differentialgleichungen (Prof. Engwer)
Ohlberger, Mario
Professur für Angewandte Mathematik, insbesondere Numerik (Prof. Ohlberger)
Renelt, Lukas
Professur für Angewandte Mathematik, insbesondere Numerik (Prof. Ohlberger)