Renelt, Lukas; Ohlberger, Mario; Engwer, Christian
Forschungsartikel in Sammelband (Konferenz) | Peer reviewedIn this contribution we propose an optimally stable ultraweak Petrov-Galerkin variational formulation and subsequent discretization for stationary reactive transport problems. The discretization is exclusively based on the choice of discrete approximate test spaces, while the trial space is a priori infinite dimensional. The solution in the trial space or even only functional evaluations of the solution are obtained in a post-processing step. We detail the theoretical framework and demonstrate its usage in a numerical experiment that is motivated from modeling of catalytic filters.
Engwer, Christian | Professur für Anwendungen von partiellen Differentialgleichungen (Prof. Engwer) Center for Nonlinear Science (CeNoS) |
Ohlberger, Mario | Professur für Angewandte Mathematik, insbesondere Numerik (Prof. Ohlberger) Center for Nonlinear Science (CeNoS) Center for Multiscale Theory and Computation (CMTC) |
Renelt, Lukas | Professur für Anwendungen von partiellen Differentialgleichungen (Prof. Engwer) Professur für Angewandte Mathematik, insbesondere Numerik (Prof. Ohlberger) |