Polygonic spectra and TR with coefficients

Krause, Achim; McCandless, Jonas; Nikolaus, Thomas

Forschungsartikel in Online-Sammlung | Preprint | Peer reviewed

Zusammenfassung

We introduce the notion of a polygonic spectrum which is designed to axiomatize the structure on topological Hochschild homology THH(R,M) of an E1-ring R with coefficients in an R-bimodule M. For every polygonic spectrum X, we define a spectrum TR(X) as the mapping spectrum from the polygonic version of the sphere spectrum S to X. In particular if applied to X=THH(R,M) this gives a conceptual definition of TR(R,M). Every cyclotomic spectrum gives rise to a polygonic spectrum and we prove that TR agrees with the classical definition of TR in this case. We construct Frobenius and Verschiebung maps on TR(X) by exhibiting TR(X) as the Z-fixedpoints of a quasifinitely genuine Z-spectrum. The notion of quasifinitely genuine Z-spectra is a new notion that we introduce and discuss inspired by a similar notion over Z introduced by Kaledin. Besides the usual coherences for genuine spectra, this notion additionally encodes that TR(X) admits certain infinite sums of Verschiebung maps.

Details zur Publikation

Name des RepositoriumsarXiv
Artikelnummer2302.07686
StatusVeröffentlicht
Veröffentlichungsjahr2023
DOI10.48550/arXiv.2302.07686
Link zum Volltexthttps://arxiv.org/pdf/2302.07686.pdf
StichwörterK-theory; homology

Autor*innen der Universität Münster

Krause, Achim
Professur für Theoretische Mathematik (Prof. Nikolaus)
Nikolaus, Thomas
Professur für Theoretische Mathematik (Prof. Nikolaus)