Thermalization of a rarefied gas with total energy conservation: existence, hypocoercivity, macroscopic limit

Favre, Gianluca; Pirner, Marlies; Schmeiser, Christian

Forschungsartikel (Zeitschrift) | Peer reviewed

Zusammenfassung

The thermalization of a gas towards a Maxwellian velocity distribution with the background temperature is described by a kinetic relaxation model. The sum of the kinetic energy of the gas and the thermal energy of the background are conserved, and the heat flow in the background is governed by the Fourier law. For the coupled nonlinear system of the kinetic and the heat equation, existence of solutions is proved on the one-dimensional torus. Spectral stability of the equilibrium is shown on the torus in arbitrary dimensions by hypocoercivity methods. The macroscopic limit towards a nonlinear cross-diffusion problem is carried out formally.

Details zur Publikation

FachzeitschriftKinetic and Related Models (Kinet. Relat. Models)
Jahrgang / Bandnr. / Volume15
Ausgabe / Heftnr. / Issue5
Seitenbereich823-841
StatusVeröffentlicht
Veröffentlichungsjahr2022
DOI10.3934/krm.2022015
Link zum Volltexthttps://arxiv.org/abs/2012.07503
Stichwörterkinetic equation; heat equation; energy balance; hypocoercivity; entropy methods; macroscopic limit; long time behaviour

Autor*innen der Universität Münster

Pirner, Marlies
Juniorprofessur für Angewandte Mathematik (Prof. Pirner)