BBE: Basin-Based Evaluation of Multimodal Multi-objective Optimization Problems

Heins J, Rook J, Schäpermeier L, Kerschke P, Bossek J, Trautmann H

Forschungsartikel in Sammelband (Konferenz) | Peer reviewed

Zusammenfassung

In multimodal multi-objective optimization (MMMOO), the focus is not solely on convergence in objective space, but rather also on explicitly ensuring diversity in decision space. We illustrate why commonly used diversity measures are not entirely appropriate for this task and propose a sophisticated basin-based evaluation (BBE) method. Also, BBE variants are developed, capturing the anytime behavior of algorithms. The set of BBE measures is tested by means of an algorithm configuration study. We show that these new measures also transfer properties of the well-established hypervolume (HV) indicator to the domain of MMMOO, thus also accounting for objective space convergence. Moreover, we advance MMMOO research by providing insights into the multimodal performance of the considered algorithms. Specifically, algorithms exploiting local structures are shown to outperform classical evolutionary multi-objective optimizers regarding the BBE variants and respective trade-off with HV.

Details zur Publikation

Herausgeber*innenRudolph G, Kononova AV, Aguirre H, Kerschke P, Ochoa G, Tu{š}ar T
BuchtitelParallel Problem Solving from Nature -- PPSN XVII
Seitenbereich192-206
VerlagSpringer International Publishing
ErscheinungsortCham
StatusVeröffentlicht
Veröffentlichungsjahr2022
Sprache, in der die Publikation verfasst istEnglisch
KonferenzParallel Problem Solving from Nature -- PPSN XVII, Dortmund, Deutschland
ISBN978-3-031-14714-2
StichwörterMulti-objective optimization; Multimodality; Performance metric; Benchmarking; Continuous optimization; Anytime behavior

Autor*innen der Universität Münster

Trautmann, Heike
Professur für Statistik und Optimierung (Prof. Trautmann) (Statistik)