The objective that freed me: a multi-objective local search approach for continuous single-objective optimization

Aspar, Pelin; Steinhoff, Vera; Schäpermeier, Lennart; Kerschke, Pascal; Trautmann, Heike; Grimme, Christian

Forschungsartikel (Zeitschrift) | Peer reviewed

Zusammenfassung

Single-objective continuous optimization can be challenging, especially when dealing with multimodal problems. This work sheds light on the effects that multi-objective optimization may have in the single-objective space. For this purpose, we examine the inner mechanisms of the recently developed sophisticated local search procedure SOMOGSA. This method solves multimodal single-objective continuous optimization problems based on first expanding the problem with an additional objective (e.g., a sphere function) to the bi-objective domain and subsequently exploiting local structures of the resulting landscapes. Our study particularly focuses on the sensitivity of this multiobjectivization approach w.r.t. (1) the parametrization of the artificial second objective, as well as (2) the position of the initial starting points in the search space. As SOMOGSA is a modular framework for encapsulating local search, we integrate Nelder–Mead local search as optimizer in the respective module and compare the performance of the resulting hybrid local search to its original single-objective counterpart. We show that the SOMOGSA framework can significantly boost local search by multiobjectivization. Hence, combined with more sophisticated local search and metaheuristics, this may help solve highly multimodal optimization problems in the future.

Details zur Publikation

FachzeitschriftNatural Computing
Jahrgang / Bandnr. / Volume22
Ausgabe / Heftnr. / Issue2
Seitenbereich271-285
StatusVeröffentlicht
Veröffentlichungsjahr2022
Sprache, in der die Publikation verfasst istEnglisch
DOI10.1007/s11047-022-09919-w
Link zum Volltexthttps://static-content.springer.com/pdf/art:10.1007/s11047-022-09919-w.pdf?token=1664373163810--8cddf0fc0c847d61a64973c7bbe7cfe111673fbd456f5dfe0562cc90be720166442f430542c19dde485f362183fbe8025244939ba41f7137c29217cc84349b3a
StichwörterMultiobjectivization; Mulltimodal optimization; Continuous optimization; Local search

Autor*innen der Universität Münster

Grimme, Christian
Professur für Statistik und Optimierung (Prof. Trautmann) (Statistik)
Forschungsgruppe Computational Social Science and Systems Analysis (CSSSA)
Steinhoff, Vera
Professur für Statistik und Optimierung (Prof. Trautmann) (Statistik)
Trautmann, Heike
Professur für Statistik und Optimierung (Prof. Trautmann) (Statistik)