Witt vectors with coefficients and characteristic polynomials over non-commutative rings

Dotto, Emanuele; Krause, Achim; Nikolaus, Thomas; Patchkoria, Irakli

Forschungsartikel (Zeitschrift) | Peer reviewed

Zusammenfassung

For a not-necessarily commutative ring we define an abelian group of Witt vectors with coefficients in an -bimodule. These groups generalize the usual big Witt vectors of commutative rings and we prove that they have analogous formal properties and structure. One main result is that is Morita invariant in. For an -linear endomorphism of a finitely generated projective -module we define a characteristic element. This element is a non-commutative analogue of the classical characteristic polynomial and we show that it has similar properties. The assignment induces an isomorphism between a suitable completion of cyclic -theory and.

Details zur Publikation

FachzeitschriftCompositio Mathematica (Compos. Math.)
Jahrgang / Bandnr. / Volume158
Ausgabe / Heftnr. / Issue2
Seitenbereich366-408
StatusVeröffentlicht
Veröffentlichungsjahr2022
Sprache, in der die Publikation verfasst istEnglisch
DOI10.1112/S0010437X22007254
Link zum Volltexthttps://www.uni-muenster.de/IVV5WS/WebHop/user/nikolaus/Papers/WittVectors.pdf
Stichwörtertrace; characteristic polynomial; Witt vectors

Autor*innen der Universität Münster

Nikolaus, Thomas
Professur für Theoretische Mathematik (Prof. Nikolaus)