Multi^3: Optimizing Multimodal Single-Objective Continuous Problems in the Multi-Objective Space by Means of Multiobjectivization

Aspar Pelin, Kerschke Pascal, Steinhoff Vera, Trautmann Heike, Grimme Christian

Forschungsartikel in Sammelband (Konferenz) | Peer reviewed

Zusammenfassung

In this work we examine the inner mechanisms of the recently developed sophisticated local search procedure SOMOGSA. This method solves multimodal single-objective continuous optimization problems by first expanding the problem with an additional objective (e.g., a sphere function) to the bi-objective space, and subsequently exploiting local structures and ridges of the resulting landscapes. Our study particularly focusses on the sensitivity of this multiobjectivization approach w.r.t. (i) the parametrization of the artificial second objective, as well as (ii) the position of the initial starting points in the search space. As SOMOGSA is a modular framework for encapsulating local search, we integrate Gradient and Nelder-Mead local search (as optimizers in the respective module) and compare the performance of the resulting hybrid local search to their original single-objective counterparts. We show that the SOMOGSA framework can significantly boost local search by multiobjectivization. Combined with more sophisticated local search and metaheuristics this may help in solving highly multimodal optimization problems in future.

Details zur Publikation

Herausgeber*innenIshibuchi, H. et al.
BuchtitelEvolutionary Multi-Criterion Optimization: 11th International Conference, EMO 2021, Shenzhen, China, March 28–31, 2021, Proceedings
Seitenbereich311-322
VerlagSpringer
ErscheinungsortHeidelberg, Berlin
StatusVeröffentlicht
Veröffentlichungsjahr2021
Sprache, in der die Publikation verfasst istEnglisch
Konferenz11th International Conference on Evolutionary Multi-Criterion Optimization (EMO), Shenzhen, China, China
DOI10.1007/978-3-030-72062-9_25
Link zum Volltexthttps://link.springer.com/chapter/10.1007/978-3-030-72062-9_25
StichwörterMultiobjective Optimization, Multimodalit

Autor*innen der Universität Münster

Aspar, Pelin
Professur für Statistik und Optimierung (Prof. Trautmann) (Statistik)
Grimme, Christian
Professur für Statistik und Optimierung (Prof. Trautmann) (Statistik)
Forschungsgruppe Computational Social Science and Systems Analysis (CSSSA)
Kerschke, Pascal
Professur für Statistik und Optimierung (Prof. Trautmann) (Statistik)
Steinhoff, Vera
Professur für Statistik und Optimierung (Prof. Trautmann) (Statistik)
Trautmann, Heike
Professur für Statistik und Optimierung (Prof. Trautmann) (Statistik)