Assenmacher D, Clever L, Pohl JS, Trautmann H, Grimme C
Forschungsartikel in Sammelband (Konferenz) | Peer reviewedThe identification of coordinated campaigns within Social Media is a complex task that is often hindered by missing labels and large amounts of data that have to be processed. We propose a new two-phase framework that uses unsupervised stream clustering for detecting suspicious trends over time in a first step. Afterwards, traditional offline analyses are applied to distinguish between normal trend evolution and malicious manipulation attempts. We demonstrate the applicability of our framework in the context of the final days of the Brexit in 2019/2020.
Assenmacher, Dennis | Professur für Statistik und Optimierung (Prof. Trautmann) (Statistik) |
Clever, Lena | Professur für Statistik und Optimierung (Prof. Trautmann) (Statistik) |
Grimme, Christian | Professur für Statistik und Optimierung (Prof. Trautmann) (Statistik) Forschungsgruppe Computational Social Science and Systems Analysis (CSSSA) |
Lütke-Stockdiek, Janina Susanne | Professur für Statistik und Optimierung (Prof. Trautmann) (Statistik) Forschungsgruppe Computational Social Science and Systems Analysis (CSSSA) |
Trautmann, Heike | Professur für Statistik und Optimierung (Prof. Trautmann) (Statistik) |