A Multi-Objective Perspective on Performance Assessment and Automated Selection of Single-Objective Optimization Algorithms

Bossek Jakob, Kerschke Pascal, Trautmann Heike

Forschungsartikel (Zeitschrift) | Peer reviewed

Zusammenfassung

We build upon a recently proposed multi-objective view onto performance measurement of single-objective stochastic solvers. The trade-off between the fraction of failed runs and the mean runtime of successful runs – both to be minimized – is directly analyzed based on a study on algorithm selection of inexact state-of-the-art solvers for the famous Traveling Salesperson Problem (TSP). Moreover, we adopt the hypervolume (HV)indicator commonly used in multi-objective optimization for simultaneously assessing both conflicting objectives and investigate relations to commonly used performance indicators, both theoretically and empirically. Next to Penalized Average Runtime (PAR) and Penalized Quantile Runtime (PQR), the HV measure is used as a core concept within the construction of per-instance algorithm selection models offering interesting insights into complementary behavior of inexact TSP solvers.

Details zur Publikation

FachzeitschriftApplied Soft Computing Journal
Jahrgang / Bandnr. / Volume2020
Ausgabe / Heftnr. / Issue88
StatusVeröffentlicht
Veröffentlichungsjahr2020
Sprache, in der die Publikation verfasst istEnglisch
DOI10.1016/j.asoc.2019.105901
Link zum Volltexthttp://www.sciencedirect.com/science/article/pii/S1568494619306829
StichwörterAlgorithm selection; Multi-objective optimization; Performance measurement; Combinatorial optimization; Traveling Salesperson Problem

Autor*innen der Universität Münster

Bossek, Jakob
Professur für Statistik und Optimierung (Prof. Trautmann) (Statistik)
Kerschke, Pascal
Professur für Statistik und Optimierung (Prof. Trautmann) (Statistik)
Trautmann, Heike
Professur für Statistik und Optimierung (Prof. Trautmann) (Statistik)