The CAST Package for Training and Assessment of Spatial Prediction Models

Meyer H; Ludwig M; Milà C; Linnenbrink J; Schumacher F

Forschungsartikel (Buchbeitrag) | Peer reviewed

Zusammenfassung

One key task in environmental science is to map environmental variables continuously in space or even in space and time. Machine learning algorithms are frequently used to learn from local field observations to make spatial predictions by estimating the value of the variable of interest in places where it has not been measured. However, the application of machine learning strategies for spatial mapping involves additional challenges compared to ``nonspatial'' prediction tasks that often originate from spatial autocorrelation and from training data that are not independent and identically distributed.

Details zur Publikation

Herausgeber*innenRocchini D
BuchtitelR Coding for Ecology
Seitenbereich247-266
VerlagSpringer Nature
ErscheinungsortCham
Titel der ReiheUse R!
StatusVeröffentlicht
Veröffentlichungsjahr2026
Sprache, in der die Publikation verfasst istEnglisch
ISBN978-3-031-99665-8
DOI10.1007/978-3-031-99665-8_11
Link zum Volltexthttps://doi.org/10.1007/978-3-031-99665-8_11; Preprint: https://doi.org/10.48550/arXiv.2404.06978
Stichwörterarea of applicability; cross-validation; machine learning; predictive mapping; spatial modelling

Autor*innen der Universität Münster

Linnenbrink, Jan
Professur für Remote Sensing und Spatial Modelling (Prof. Meyer)
Ludwig, Marvin
Professur für Remote Sensing und Spatial Modelling (Prof. Meyer)
Meyer, Hanna
Professur für Remote Sensing und Spatial Modelling (Prof. Meyer)
Schumacher, Fabian Lukas
Institut für Landschaftsökologie (ILÖK)