Mosig C; Vajna-Jehle J; Mahecha MD; Cheng Y; Hartmann H; Montero D; Junttila S; Horion S; Schwenke MB; Koontz MJ; Maulud KNA; Adu-Bredu S; Al-Halbouni D; Ali M; Allen M; Altman J; Amorós L; Angiolini C; Astrup R; Awada H; Barrasso C; Bartholomeus H; Beck PS; Bozzini A; Braun-Wimmer J; Brede B; Breunig FM; Brugnaro S; Buras A; Burchard-Levine V; Camarero JJ; Candotti A; Capuder L; Carrieri E; Centritto M; Chirici G; Cloutier M; Conciani D; Cushman K; Dalling JW; Dao PD; Dempewolf J; Denter M; Dogotari M; Díaz-Delgado R; Ecke S; Eichel J; Eltner A; Fabbri A; Fabi M; Fassnacht F; Ferreira MP; Fischer FJ; Frey J; Frick A; Fuentes J; Ganz S; Garbarino M; García M; Gassilloud M; Gazol A; Gea-Izquierdo G; Gerberding K; Ghasemi M; Giannetti F; Gillan J; Gonzalez R; Gosper C; Greene T; Greinwald K; Grieve S; Große-Stoltenberg A; Gutierrez JA; Göritz A; Hajek P; Hedding D; Hempel J; Heremans S; Hernández M; Heurich M; Honkavaara E; Höfle B; Jackisch R; Jucker T; Kalwij JM; Kepfer-Rojas S; Khatri-Chhetri P; Kleinebecker T; Klemmt H; Klouček T; Koivumäki N; Kolagani N; Komárek J; Korznikov K; Kraszewski B; Kruse S; Krüger R; Kuechly H; Kwong IH; Laliberté E; Langan L; Latifi H; Leal-Medina C; Lehmann JR; Li L; Lines E; Lisiewicz M; Lopatin J; Lucieer A; Ludwig A; Ludwig M; Lyytikäinen-Saarenmaa P; Ma Q; Mansuy N; Peña JM; Marino G; Maroschek M; Martín M; Martín-Benito D; Matham P; Mazzoni S; Meloni F; Menzel A; Meyer H; Miraki M; Moreno G; Moreno-Fernández D; Muller-Landau HC; Mälicke M; Möhring J; Müllerova J; Naidu SS; Nardi D; Neumeier P; Nita MD; Näsi R; Oppgenoorth L; Orunbaev S; Palmer M; Paul T; Pfenning M; Potts A; Prasanna GL; Prober S; Puliti S; Pérez-Luque AJ; Pérez-Priego O; Reudenbach C; Revuelto J; Rivas-Torres G; Roberge P; Roggero PP; Rossi C; Ruehr NK; Ruiz-Benito P; Runge CM; Satta GGA; Scanu B; Scherer-Lorenzen M; Schiefer F; Schiller C; Schladebach J; Schmehl M; Schmid J; Schmidt TA; Schwarz S; Seidl R; Seifert T; Barba AS; Shafeian E; Shapiro A; {de Simone} L; Sohrabi H; Soltani S; Sotomayor L; Sparrow B; Steer BS; Stenson M; Stöckigt B; Su Y; Suomalainen J; Tamudo E; Barbieri MJT; Tomelleri E; Torresani M; Trepekli K; Ullah S; Ullah S; Umlauft J; Vargas-Ramírez N; Vatandaslar C; Visacki V; Volpi M; Vásquez V; Wallis C; Weinstein B; Weiser H; Wich S; Ximena TC; Zarco-Tejada PJ; Zdunic K; Zielewska-Büttner K; {de Oliveira} RA; {van Wagtendonk} L; {von Dosky} V; Kattenborn T
Forschungsartikel (Zeitschrift) | Peer reviewedExcessive tree mortality is a global concern and remains poorly understood as it is a complex phenomenon. We lack global and temporally continuous coverage on tree mortality data. Ground-based observations on tree mortality, e.g., derived from national inventories, are very sparse, and may not be standardized or spatially explicit. Earth observation data, combined with supervised machine learning, offer a promising approach to map overstory tree mortality in a consistent manner over space and time. However, global-scale machine learning requires broad training data covering a wide range of environmental settings and forest types. Low altitude observation platforms (e.g., drones or airplanes) provide a cost-effective source of training data by capturing high-resolution orthophotos of overstory tree mortality events at centimeter-scale resolution. Here, we introduce deadtrees.earth, an open-access platform hosting more than two thousand centimeter-resolution orthophotos, covering more than 1,000,000 ha, of which more than 58,000 ha are manually annotated with live/dead tree classifications. This community-sourced and rigorously curated dataset can serve as a comprehensive reference dataset to uncover tree mortality patterns from local to global scales using space-based Earth observation data and machine learning models. This will provide the basis to attribute tree mortality patterns to environmental changes or project tree mortality dynamics to the future. The open nature of deadtrees.earth, together with its curation of high-quality, spatially representative, and ecologically diverse data will continuously increase our capacity to uncover and understand tree mortality dynamics.
| Lehmann, Jan | Professur für Remote Sensing und Spatial Modelling (Prof. Meyer) |
| Ludwig, Marvin | Professur für Remote Sensing und Spatial Modelling (Prof. Meyer) |
| Meyer, Hanna | Professur für Remote Sensing und Spatial Modelling (Prof. Meyer) |