On the K-theory of Z/pn

Antieau B; Krause A; Nikolaus T

Forschungsartikel in Online-Sammlung | Preprint | Peer reviewed

Zusammenfassung

We give an explicit algebraic description, based on prismatic cohomology, of the algebraic K-groups of rings of the form OK/I where K is a p-adic field and I is a non-trivial ideal in the ring of integers OK; this class includes the rings Z/pn where p is a prime. The algebraic description allows us to describe a practical algorithm to compute individual K-groups as well as to obtain several theoretical results: the vanishing of the even K-groups in high degrees, the determination of the orders of the odd K-groups in high degrees, and the degree of nilpotence of v1 acting on the mod p syntomic cohomology of Z/pn.

Details zur Publikation

Name des Repositoriumsarxiv.org
Artikelnummer2405.04329
Statuseingereicht / in Begutachtung
Veröffentlichungsjahr2024
DOI10.48550/arXiv.2405.04329
Link zum Volltexthttps://arxiv.org/abs/2405.04329

Autor*innen der Universität Münster

Nikolaus, Thomas
Professur für Theoretische Mathematik (Prof. Nikolaus)