Non-aqueous battery electrolytes: high-throughput experimentation and machine learning-aided optimization of ionic conductivity

Yan, Peng; Fischer, Mirko; Martin, Harrison; Wolke, Christian; Krishnamoorthy, Anand Narayanan; Cekic-Laskovic, Isidora; Diddens, Diddo; Winter, Martin; Heuer, Andreas

Forschungsartikel (Zeitschrift) | Peer reviewed

Zusammenfassung

Although data-driven optimization has been recognized as a useful approach for the advancement of liquid battery electrolytes, a high quality and large dataset is essential to avoid bias in the interpretation of results. In this work, we present the newly designed and developed platform which comprises an automated high-throughput experimentation (HTE) modular system coupled with the Liquid Electrolyte Composition Analysis (LECA) package for the data-driven modeling and analysis of ionic conductivity as a vital bulk electrolyte property. The LECA package combines popular machine learning libraries into a simplified workflow enabling easy, semi-automated processing and analysis of HTE acquired data. The package facilitates the parallel training, cross-validation and uncertainty estimation of Linear Regression, Random Forest, Neural Network and Gaussian Process Regression models. By comparatively scoring model prediction accuracy, the LECA package identifies the best performing model architecture(s) and applies them to find electrolyte compositions which maximize ionic conductivity. Overall, this comprehensive and versatile platform with automated experiments and data-driven analysis paves the way for more efficient and insightful research in liquid battery electrolyte development.

Details zur Publikation

FachzeitschriftJournal of Materials Chemistry A (J. Mater. Chem. A)
Jahrgang / Bandnr. / Volume12
Ausgabe / Heftnr. / Issue30
Seitenbereich19123-19136
StatusVeröffentlicht
Veröffentlichungsjahr2024
Sprache, in der die Publikation verfasst istEnglisch
DOI10.1039/d3ta06249j
StichwörterAutomation; Electric batteries; Electrolytes; Forestry; Large datasets; Machine learning; Regression analysis

Autor*innen der Universität Münster

Fischer, Mirko
Professur für Theorie komplexer Systeme (Prof. Heuer)
Heuer, Andreas
Professur für Theorie komplexer Systeme (Prof. Heuer)
Martin, Harrison
Institut für Physikalische Chemie
Winter, Martin
Münster Electrochemical Energy Technology Battery Research Center (MEET)