EXC 2044 - A1: Arithmetic, geometry and representations

Grunddaten zu diesem Projekt

Art des ProjektesTeilprojekt in DFG-Verbund koordiniert an der Universität Münster
Laufzeit an der Universität Münster01.01.2019 - 31.12.2025 | 1. Förderperiode

Beschreibung

The Langlands programme relates representations of (the adele valued points of) reductive groups G over Q - so-called automorphic representations - with certain representations of the absolute Galois group of Q. This programme includes the study of these objects over general global fields (finite extension of Q or Fp (t)) and local fields as well. In its local form the classical programme onlyconsidered l-adic Galois representations of p-adic fields for unequal primes l neq p. In order to allow for a p-adic variation of the objects, it is absolutely crucial to extend it to the case l = p. In the global situation, the automorphic representations in question can often be realised in (or studied via) the cohomology of a tower of Shimura varieties (or related moduli spaces) attached to the group G. We will focus on the following directions within this programme: The p-adic and mod p Langlands programme asks for an extension of such a correspondence involving certain continuous representations with p-adic respectively mod p coefficients. Broadening the perspective to p-adic automorphic forms should, for example, enable us to capture all Galois representations, not just those having a particular Hodge theoretic behaviour at primes dividing p. This extended programme requires the introduction of derived categories. We will study differential graded Hecke algebras and their derived categories on the reductive group side. On the Galois side, we hope to use derived versions of the moduli spaces of p-adic Galois representations introduced by Emerton and Gee. The geometric Langlands programme is a categorification of the Langlands programme. We plan to unify the different approaches using motivic methods. In another direction, we study the geometry and arithmetic of moduli stacks of global G-shtukas over function fields. Their cohomology has been the crucial tool to establish large parts of the local and global Langlands programme over function fields. Variants of G-shtukas are also used to construct and investigate families of p-adic Galois representations. Cohomology theories are a universal tool pervading large parts of algebraic and arithmetic geometry. We will develop and study cohomology theories, especially in mixed characteristic, that generalise and unify étale cohomology, crystalline cohomology and de Rham cohomology as well as Hochschild cohomology in the non-commutative setting. Developing (topological) cyclic homology in new contexts is an important aim. A main goal is to construct a cohomology theory that can serve the same purposes for arithmetic schemes as the l-adic or crystalline cohomology with their Frobenius actions for varieties over finite fields. Ideas from algebraic geometry, algebraic topology, operator algebras and analysis blend in these investigations.

Stichwörterarithmetic; geometry; representations; Langlands programme; Cohomology theories; algebraic geometry; arithmetic geometry
Webseite des Projektshttps://www.uni-muenster.de/MathematicsMuenster/research/arithmeticandgroups/
FörderkennzeichenEXC 2044/1
Mittelgeber / Förderformat
  • DFG - Exzellenzcluster (EXC)

Projektleitung der Universität Münster

Cuntz, Joachim
Professur für Theoretische Mathematik (Prof. Cuntz)
Deninger, Christopher
Professur für Arithmetische Geometrie (Prof. Deninger)
Hartl, Urs
Professur für Arithmetische Geometrie (Prof. Hartl)
Hellmann, Eugen
Professur für Theoretische Mathematik (Prof. Hellmann)
Hille, Lutz
Mathematisches Institut
Nikolaus, Thomas
Professur für Theoretische Mathematik (Prof. Nikolaus)
Scherotzke, Sarah
Professur für Theoretische Mathematik (Prof. Scherotzke)
Schneider, Peter
Professur für Zahlentheorie (Prof. Schneider)
Scholbach, Jakob
Professur für Arithmetische Geometrie (Prof. Deninger)
Schürmann, Jörg
Mathematisches Institut
Viehmann, Eva
Professur für Theoretische Mathematik (Prof. Viehmann)
Zhao, Yifei
Mathematisches Institut

Antragsteller*innen der Universität Münster

Cuntz, Joachim
Professur für Theoretische Mathematik (Prof. Cuntz)
Deninger, Christopher
Professur für Arithmetische Geometrie (Prof. Deninger)
Hartl, Urs
Professur für Arithmetische Geometrie (Prof. Hartl)
Hellmann, Eugen
Professur für Theoretische Mathematik (Prof. Hellmann)
Hille, Lutz
Mathematisches Institut
Nikolaus, Thomas
Professur für Theoretische Mathematik (Prof. Nikolaus)
Scherotzke, Sarah
Professur für Theoretische Mathematik (Prof. Scherotzke)
Schneider, Peter
Professur für Zahlentheorie (Prof. Schneider)
Scholbach, Jakob
Professur für Arithmetische Geometrie (Prof. Deninger)
Schürmann, Jörg
Mathematisches Institut