CutFEM forward modeling for EEG source analysis

Erdbrügger, T.; Westhoff, A.; Höltershinken, M.; Radecke, J.-O.; Buschermöhle,Y.; Buyx, A.; Wallois, F.; Pursiainen, S.; Gross, J.; Lencer, R.; Engwer, C.; Wolters, C.H.

Research article (journal) | Peer reviewed

Abstract

Source analysis of Electroencephalography (EEG) data requires the computation of the scalp potential induced by current sources in the brain. This so-called EEG forward problem is based on an accurate estimation of the volume conduction effects in the human head, represented by a partial differential equation which can be solved using the finite element method (FEM). FEM offers flexibility when modeling anisotropic tissue conductivities but requires a volumetric discretization, a mesh, of the head domain. Structured hexahedral meshes are easy to create in an automatic fashion, while tetrahedral meshes are better suited to model curved geometries. Tetrahedral meshes, thus, offer better accuracy but are more difficult to create. We introduce CutFEM for EEG forward simulations to integrate the strengths of hexahedra and tetrahedra. It belongs to the family of unfitted finite element methods, decoupling mesh and geometry representation. Following a description of the method, we will employ CutFEM in both controlled spherical scenarios and the reconstruction of somatosensory-evoked potentials. CutFEM outperforms competing FEM approaches with regard to numerical accuracy, memory consumption, and computational speed while being able to mesh arbitrarily touching compartments. CutFEM balances numerical accuracy, computational efficiency, and a smooth approximation of complex geometries that has previously not been available in FEM-based EEG forward modeling.

Details about the publication

JournalFrontiers in Human Neuroscience
Volume17
Article number1216758
StatusPublished
Release year2023
Language in which the publication is writtenEnglish
DOI10.3389/fnhum.2023.1216758
Link to the full texthttps://www.frontiersin.org/articles/10.3389/fnhum.2023.1216758/full
KeywordsEEG; forward modeling; CutFEM; source analysis

Authors from the University of Münster

Buschermöhle, Yvonne
Institute for Biomagnetism and Biosignalanalysis
Engwer, Christian
Professorship for Applications of Partial Differential Equations
Erdbrügger, Tim-Rene
Institute for Biomagnetism and Biosignalanalysis
Groß, Joachim
Institute for Biomagnetism and Biosignalanalysis
Höltershinken, Malte
Institute for Biomagnetism and Biosignalanalysis
Lencer, Rebekka
Institute of Translational Psychiatry
Wolters, Carsten
Institute for Biomagnetism and Biosignalanalysis