The effect of navigation method and visual display on distance perception in a large-scale virtual buildingOpen Access

Li H.; Mavros P.; Krukar J.; Hölscher C.

Research article (journal) | Peer reviewed

Abstract

Immersive virtual reality (VR) technology has become a popular method for fundamental and applied spatial cognition research. One challenge researchers face is emulating walking in a large-scale virtual space although the user is in fact in a small physical space. To address this, a variety of movement interfaces in VR have been proposed, from traditional joysticks to teleportation and omnidirectional treadmills. These movement methods tap into different mental processes of spatial learning during navigation, but their impacts on distance perception remain unclear. In this paper, we investigated the role of visual display, proprioception, and optic flow on distance perception in a large-scale building by manipulating four different movement methods. Eighty participants either walked in a real building, or moved through its virtual replica using one of three movement methods: VR-treadmill, VR-touchpad, and VR-teleportation. Results revealed that, first, visual display played a major role in both perceived and traversed distance estimates but did not impact environmental distance estimates. Second, proprioception and optic flow did not impact the overall accuracy of distance perception, but having only an intermittent optic flow (in the VR-teleportation movement method) impaired the precision of traversed distance estimates. In conclusion, movement method plays a significant role in distance perception but does not impact the configurational knowledge learned in a large-scale real and virtual building, and the VR-touchpad movement method provides an effective interface for navigation in VR.

Details about the publication

JournalCognitive Processing
Volume22
Issue2
Page range239-259
StatusPublished
Release year2021
Language in which the publication is writtenEnglish
DOI10.1007/s10339-020-01011-4
Link to the full texthttps://api.elsevier.com/content/abstract/scopus_id/85100849725
KeywordsDistance judgements; Environmental distance; Movement interfaces; Optic flow; Perceived distance; Traversed distance

Authors from the University of Münster

Krukar, Jakub
Junior professorship of spatial cognition (Prof. Krukar)