Influence of LiNO3 on the Lithium Metal Deposition Behavior in Carbonate-Based Liquid Electrolytes and on the Electrochemical Performance in Zero-Excess Lithium Metal Batteries

Stuckenberg, Silvan; Bela, Marlena Maria; Lechtenfeld, Christian-Timo; Mense, Maximilian; Küpers, Verena; Ingber, Tjark Thorben Klaus; Winter, Martin; Stan, Marian Cristian

Research article (journal) | Peer reviewed

Abstract

Continuous lithium (Li) depletion shadows the increase in energy density and safety properties promised by zero-excess lithium metal batteries (ZELMBs). Guiding the Li deposits toward more homogeneous and denser lithium morphology results in improved electrochemical performance. Herein, a lithium nitrate (LiNO3) enriched separator that improves the morphology of the Li deposits and facilitates the formation of an inorganic-rich solid–electrolyte interphase (SEI) resulting in an extended cycle life in Li||Li-cells as well as an increase of the Coulombic efficiency in Cu||Li-cells is reported. Using a LiNi0.6Co0.2Mn0.2O2 positive electrode in NCM622||Cu-cells, a carbonate-based electrolyte, and a LiNO3 enriched separator, an extension of the cycle life by more than 50 cycles with a moderate capacity fading compared to the unmodified separator is obtained. The relative constant level of LiNO3 in the electrolyte, maintained by the LiNO3 enriched separator throughout the cycling process stems at the origin of the improved performance. Ion chromatography measurements carried out at different cycles support the proposed mechanism of a slow and constant release of LiNO3 from the separator. The results indicate that the strategy of using a LiNO3 enriched separator instead of LiNO3 as a sacrificial electrolyte additive can improve the performance of ZELMBs further by maintaining a compact and thus stable SEI layer on Li deposits.

Details about the publication

JournalSmall
Volume2305203
Page range1-10
StatusPublished
Release year2023 (05/10/2023)
Language in which the publication is writtenEnglish
DOI10.1002/smll.202305203
Link to the full texthttps://onlinelibrary.wiley.com/doi/epdf/10.1002/smll.202305203
Keywordszero-excess lithium metal, cryo-FIB/SEM, LiNO3,

Authors from the University of Münster

Bela, Marlena Maria
Münster Electrochemical Energy Technology Battery Research Center (MEET)
Ingber, Tjark Thorben Klaus
Münster Electrochemical Energy Technology Battery Research Center (MEET)
Küpers, Verena
Münster Electrochemical Energy Technology Battery Research Center (MEET)
Lechtenfeld, Christian-Timo
Münster Electrochemical Energy Technology Battery Research Center (MEET)
Mense, Maximilian
Münster Electrochemical Energy Technology Battery Research Center (MEET)
Stuckenberg, Silvan
Münster Electrochemical Energy Technology Battery Research Center (MEET)