DNA repair in cardiomyocytes is critical for maintaining cardiac function in mice [DNA-Reparatur in Kardiomyozyten ist entscheidend für den Erhalt der Herzfunktion Herzfunktion bei Mäusen]

de Boer, Martine; Hekkert, Maaike te Lintel; Chang, Jiang; van Thiel, Bibi S.; Martens, Leonie; Bos, Maxime M.; de Kleijnen, Marion G. J.; Ridwan, Yanto; Octavia, Yanti; van Deel, Elza D.; Blonden, Lau A.; Brandt, Renata M. C.; Barnhoorn, Sander; Bautista-Nino, Paula K.; Krabbendam-Peters, Ilona; Wolswinkel, Rianne; Arshi, Banafsheh; Ghanbari, Mohsen; Kupatt, Christian; de Windt, Leon J.; Danser, A. H. Jan; van der Pluijm, Ingrid; Remme, Carol Ann; Stoll, Monika; Pothof, Joris; Roks, Anton J. M.; Kavousi, Maryam; Essers, Jeroen; van der Velden, Jolanda; Hoeijmakers, Jan H. J.; Duncker, Dirk J.

Research article (journal) | Peer reviewed

Abstract

Heart failure has reached epidemic proportions in a progressively ageing population. The molecular mechanisms underlying heart failure remain elusive, but evidence indicates that DNA damage is enhanced in failing hearts. Here, we tested the hypothesis that endogenous DNA repair in cardiomyocytes is critical for maintaining normal cardiac function, so that perturbed repair of spontaneous DNA damage drives early onset of heart failure. To increase the burden of spontaneous DNA damage, we knocked out the DNA repair endonucleases xeroderma pigmentosum complementation group G (XPG) and excision repair cross-complementation group 1 (ERCC1), either systemically or cardiomyocyte-restricted, and studied the effects on cardiac function and structure. Loss of DNA repair permitted normal heart development but subsequently caused progressive deterioration of cardiac function, resulting in overt congestive heart failure and premature death within 6 months. Cardiac biopsies revealed increased oxidative stress associated with increased fibrosis and apoptosis. Moreover, gene set enrichment analysis showed enrichment of pathways associated with impaired DNA repair and apoptosis, and identified TP53 as one of the top active upstream transcription regulators. In support of the observed cardiac phenotype in mutant mice, several genetic variants in the ERCC1 and XPG gene in human GWAS data were found to be associated with cardiac remodelling and dysfunction. In conclusion, unrepaired spontaneous DNA damage in differentiated cardiomyocytes drives early onset of cardiac failure. These observations implicate DNA damage as a potential novel therapeutic target and highlight systemic and cardiomyocyte-restricted DNA repair-deficient mouse mutants as bona fide models of heart failure.

Details about the publication

JournalAging Cell
Volume22
Issue3
Page range1-17
StatusPublished
Release year2023
Language in which the publication is writtenEnglish
DOI10.1111/acel.13768
Keywordsapoptosis; cardiac function; congestive heart failure; DNA damage; DNA repair

Authors from the University of Münster

Martens, Leonie Chiara
Humangenetik, Abt. für Genetische Epidemiologie
Stoll, Monika
Humangenetik, Abt. für Genetische Epidemiologie