Stick-slip dynamics in the forced wetting of polymer brushes

Greve, Daniel; Hartmann, Simon; Thiele, Uwe

Research article (journal) | Peer reviewed

Abstract

We study the static and dynamic wetting of adaptive substrates using a mesoscopic hydrodynamic model for a liquid droplet on a solid substrate covered by a polymer brush. First, we show that on the macroscale Young's law still holds for the equilibrium contact angle and that on the mesoscale a Neumann-type law governs the shape of the wetting ridge. Following an analytic and numeric assessment of the static profiles of droplet and wetting ridge, we examine the dynamics of the wetting ridge for a liquid meniscus that is advanced at constant mean speed. In other words, we consider an inverse Landau–Levich case where a brush-covered plate is introduced into (and not drawn from) a liquid bath. We find a characteristic stick-slip motion that emerges when the dynamic contact angle of the stationary moving meniscus decreases with increasing velocity, and relate the onset of slip to Gibbs' inequality and to a cross-over in relevant time scales.

Details about the publication

JournalSoft Matter
Volume19
Issue22
Page range4041-4061
StatusPublished
Release year2023 (16/05/2023)
Language in which the publication is writtenEnglish
DOI10.1039/D3SM00104K
Link to the full texthttps://arxiv.org/abs/2301.10513
KeywordsPolymer Brush; Adaptive Substrate; Stick-slip; Gradient Dynamics; Thin Film;

Authors from the University of Münster

Greve, Daniel
Institute for Theoretical Physics
Hartmann, Simon
Professur für Theoretische Physik (Prof. Thiele)
Center for Nonlinear Science
Thiele, Uwe
Professur für Theoretische Physik (Prof. Thiele)
Center for Nonlinear Science