Recognize the little ones: Uas-based in-situ fluorescent tracer detection

Teickner, H; Lehmann, JRK; Guth, P; Meinking, F; Ott, D.

Research article (journal) | Peer reviewed

Abstract

In ecological research, a key interest is to explore movement patterns of individual organisms across different spatial scales as one driver of biotic interactions. While various methods exist to detect and record the presence and movements of individuals in combination with UAS, addressing these for smaller animals, such as insects, is challenging and often fails to reveal information on potential interactions. Here, we address this gap by combining the UAS-based detection of small tracers of fluorescent dyes by means of a simple experiment under field conditions for the first time. We (1) excited fluorescent tracers utilizing an UV radiation source and recorded images with an UAS, (2) conducted a semi-automated selection of training and test samples to (3) train a simple SVM classifier, allowing (4) the classification of the recorded images and (5) the automated identification of individual traces. The tracer detection success significantly decreased with increasing altitude, increasing distance from the UV radiation signal center, and decreasing size of the fluorescent traces, including significant interactions amongst these factors. As a first proof-of-principle, our approach has the potential to be broadly applicable in ecological research, particularly in insect monitoring.

Details about the publication

JournalDrones
Volume3
Issue1
Page range20-20
StatusPublished
Release year2019
Language in which the publication is writtenEnglish
DOI10.3390/drones3010020
Link to the full texthttps://www.mdpi.com/2504-446X/3/1/20
Keywordsdrone, UAV, animal movement, ecology, insect monitoring, plant-pollinator interaction

Authors from the University of Münster

Lehmann, Jan
Professorship of Remote Sensing and Spatial Modelling