Considering the Role of Ion Transport in Diffuson-Dominated Thermal Conductivity

Bernges T.; Hanus R.; Wankmiller B.; Imasato K.; Lin S.; Ghidiu M.; Gerlitz M.; Peterlechner M.; Graham S.; Hautier G.; Pei Y.; Hansen M.R.; Wilde G.; Snyder G.J.; George J.; Agne M.T.; Zeier W.G.

Research article (journal) | Peer reviewed

Abstract

Next-generation thermal management requires the development of low lattice thermal conductivity materials, as observed in ionic conductors. For example, thermoelectric efficiency is increased when thermal conductivity is decreased. Detrimentally, high ionic conductivity leads to thermoelectric device degradation. Battery safety and design also require an understanding of thermal transport in ionic conductors. Ion mobility, structural complexity, and anharmonicity have been used to explain the thermal transport properties of ionic conductors. However, thermal and ionic transport are rarely discussed in direct comparison. Herein, the ionic conductivity of Ag+ argyrodites is found to change by orders of magnitude without altering the thermal conductivity. Thermal conductivity measurements and two-channel lattice dynamics modeling reveal that the majority of Ag+ vibrations have a non-propagating diffuson-like character, similar to amorphous materials. It is found that high ionic mobility is not a requirement for diffuson-mediated transport. Instead, the same bonding and structural traits that can lead to fast ionic conduction also lead to diffuson-mediated transport. Bridging the fields of solid-state ionics and thermal transport, it is proposed that a vibrational perspective can lead to new design strategies for functional ionic conducting materials. As a first step, the authors relate the so-called Meyer–Neldel behavior in ionic conductors to phonon occupations.

Details about the publication

JournalAdvanced Energy Materials (Adv. Energy Mater.)
Volume12
Issue22
Article number2200717
StatusPublished
Release year2022
Language in which the publication is writtenEnglish
DOI10.1002/aenm.202200717
Link to the full texthttps://api.elsevier.com/content/abstract/scopus_id/85128784861
Keywordsargyrodites; diffusons; ion conduction; Meyer–Neldel; phonon occupations; thermal transport

Authors from the University of Münster

Bernges, Tim
Professorship of Inorganic Solid State Chemistry (Prof. Zeier)
Gerlitz, Marius
Professorship of Materials Physics (Prof. Wilde)
Hansen, Michael Ryan
Professur für Physikalische Chemie (Prof. Hansen)
Peterlechner, Martin
Professorship of Materials Physics (Prof. Wilde)
Wankmiller, Björn
Münster Electrochemical Energy Technology Battery Research Center (MEET)
Professur für Physikalische Chemie (Prof. Hansen)
Wilde, Gerhard
Professorship of Materials Physics (Prof. Wilde)
Zeier, Wolfgang
Professorship of Inorganic Solid State Chemistry (Prof. Zeier)