Microbial drivers of plant richness and productivity in a grassland restoration experiment along a gradient of land-use intensity

Abrahão A.; Marhan S.; Boeddinghaus R.S.; Nawaz A.; Wubet T.; Hölzel N.; Klaus V.H.; Kleinebecker T.; Freitag M.; Hamer U.; Oliveira R.S.;Lambers H.; Kandeler E.;

Research article (journal) | Peer reviewed

Abstract

Plant–soil feedbacks (PSFs) underlying grassland plant richness and productivity are typically coupled with nutrient availability; however, we lack understanding of how restoration measures to increase plant diversity might affect PSFs. We examined the roles of sward disturbance, seed addition and land-use intensity (LUI) on PSFs. We conducted a disturbance and seed addition experiment in 10 grasslands along a LUI gradient and characterized plant biomass and richness, soil microbial biomass, community composition and enzyme activities. Greater plant biomass at high LUI was related to a decrease in the fungal to bacterial ratios, indicating highly productive grasslands to be dominated by bacteria. Lower enzyme activity per microbial biomass at high plant species richness indicated a slower carbon (C) cycling. The relative abundance of fungal saprotrophs decreased, while pathogens increased with LUI and disturbance. Both fungal guilds were negatively associated with plant richness, indicating the mechanisms underlying PSFs depended on LUI. We show that LUI and disturbance affect fungal functional composition, which may feedback on plant species richness by impeding the establishment of pathogen-sensitive species. Therefore, we highlight the need to integrate LUI including its effects on PSFs when planning for practices that aim to optimize plant diversity and productivity.

Details about the publication

JournalNew Phytologist
Volume236
Issue5
Page range1936-1950
StatusPublished
Release year2022
Language in which the publication is writtenEnglish
DOI10.1111/nph.18503
Link to the full texthttps://api.elsevier.com/content/abstract/scopus_id/85139613677
Keywordsbiodiversity and ecosystem functions; aboveground–belowground interactions; phospholipid fatty acids; nutrient cycling; microbial biomass; grassland renewal; temperate grassland; plant–soil feedbacks

Authors from the University of Münster

Freitag, Martin
Professorship for Ecosystem Research (Prof. Hölzel)
Hamer, Ute
Institute of Landscape Ecology (ILÖK)
Hölzel, Norbert
Professorship for Ecosystem Research (Prof. Hölzel)