Exploring bifurcations in Bose–Einstein condensates via phase field crystal models

Steinberg, Alina; Maucher, Fabian; Gurevich, Svetlana; Thiele Uwe

Research article (journal) | Peer reviewed

Abstract

To facilitate the analysis of pattern formation and the related phase transitions in Bose–Einstein condensates, we present an explicit approximate mapping from the nonlocal Gross–Pitaevskii equation with cubic nonlinearity to a phase field crystal (PFC) model. This approximation is valid close to the superfluid–supersolid phase transition boundary. The simplified PFC model permits the exploration of bifurcations and phase transitions via numerical path continuation employing standard software. While revealing the detailed structure of the bifurcations present in the system, we demonstrate the existence of localized states in the PFC approximation. Finally, we discuss how higher-order nonlinearities change the structure of the bifurcation diagram representing the transitions found in the system.

Details about the publication

JournalChaos
Volume32
Issue11
StatusPublished
Release year2022 (04/11/2022)
Language in which the publication is writtenEnglish
DOI10.1063/5.0101401
Link to the full texthttps://aip.scitation.org/doi/10.1063/5.0101401
KeywordsMusterbildung und Selbstorganisation, Bifurkationstheorie, Lokalisierte Zustände, Phasenfeldkristallmodell, Bose-Einstein Kondensat, Numerische Kontinuierung, Linear stability analysis; Localized states; Superfluids; Bose-Einstein condensate; Phase transitions; Gross-Pitaevskii equation

Authors from the University of Münster

Gurevich, Svetlana
Professur für Theoretische Physik (Prof. Thiele)
Center for Nonlinear Science
Center for Multiscale Theory and Computation (CMTC)
Center for Soft Nanoscience (SoN)
Institute for Theoretical Physics
Steinberg, Alina Barbara
Professur für Theoretische Physik (Prof. Thiele)
Thiele, Uwe
Professur für Theoretische Physik (Prof. Thiele)
Center for Nonlinear Science
Center for Multiscale Theory and Computation (CMTC)