{KATRIN}: status and prospects for the neutrino mass and beyond

Aker M, Balzer M, Batzler D, Beglarian A, Behrens J, Berlev A, Besserer U, Biassoni M, Bieringer B, Block F, Bobien S, Bombelli L, Bormann D, Bornschein B, Bornschein L, Böttcher M, Brofferio C, Bruch C, Brunst T, Caldwell TS, Carminati M, Carney RMD, Chilingaryan S, Choi W, Cremonesi O, Debowski K, Descher M, Barrero DD, Doe PJ, Dragoun O, Drexlin G, Edzards F, Eitel K, Ellinger E, Engel R, Enomoto S, Felden A, Fink D, Fiorini C, Formaggio JA, Forstner C, Fränkle FM, Franklin GB, Friedel F, Fulst A, Gauda K, Gavin AS, Gil W, Glück F, Grande A, Grössle R, Gugiatti M, Gumbsheimer R, Hannen V, Hartmann J, Hau{ß}mann N, Helbing K, Hickford S, Hiller R, Hillesheimer D, Hinz D, Höhn T, Houdy T, Huber A, Jansen A, Karl C, Kellerer J, King P, Kleifges M, Klein M, Köhler C, Köllenberger L, Kopmann A, Korzeczek M, Koval{í}}k A, Krasch B, Krause H, Lasserre T, Cascio LL, Lebeda O, Lechner P, Lehnert B, Le TL, Lokhov A, Machatschek M, Malcherek E, Manfrin D, Mark M, Marsteller A, Martin EL, Mazzola E, Melzer C, Mertens S, Mostafa J, Müller K, Nava A, Neumann H, Niemes S, Oelpmann P, Onillon A, Parno DS, Pavan M, Pigliafreddo A, Poon AWP, Poyato JML, Pozzi S, Priester F, Puritscher M, Radford DC, R{á}}li{š}} J, Ramachandran S, Robertson RGH, Rodejohann W, Rodenbeck C, Röllig M, Röttele C, Ry{š}}av{ý}} M, Sack R, Saenz A, Salomon RWJ, Schäfer P, Schimpf L, Schlösser K, Schlösser M, Schlüter L, Schneidewind S, Schrank M, Schütz A, Schwemmer A, Sedlak A, {Š}}ef{č}}{í}}k M, Sibille V, Siegmann D, Slez{á}}k M, Spanier F, Spreng D, Steidl M, Sturm M, Telle HH, Thorne LA, Thümmler T, Titov N, Tkachev I, Trigilio P, Urban K, Valerius K, V{é}}nos D, Hern{á}}ndez APV, Voigt P, Weinheimer C, Welte S, Wendel J, Wiesinger C, Wilkerson JF, Wolf J, Wunderl L, Wüstling S, Wydra J, Xu W, Zadoroghny S, Zeller G

Research article (journal) | Peer reviewed

Abstract

The Karlsruhe Tritium Neutrino (KATRIN) experiment is designed to measure a high-precision integral spectrum of the endpoint region of T2 β decay, with the primary goal of probing the absolute mass scale of the neutrino. After a first tritium commissioning campaign in 2018, the experiment has been regularly running since 2019, and in its first two measurement campaigns has already achieved a sub-eV sensitivity. After 1000 days of data-taking, KATRIN’s design sensitivity is 0.2 eV at the 90% confidence level. In this white paper we describe the current status of KATRIN; explore prospects for measuring the neutrino mass and other physics observables, including sterile neutrinos and other beyond-Standard-Model hypotheses; and discuss research-and-development projects that may further improve the KATRIN sensitivity.

Details about the publication

JournalJournal of Physics G: Nuclear and Particle Physics (J Phys G Nucl Part Phys)
Volume49
Issue10
Page range100501-100501
StatusPublished
Release year2022
Language in which the publication is writtenEnglish
DOI10.1088/1361-6471/ac834e
Link to the full texthttps://doi.org/10.1088/1361-6471/ac834e
Keywordsneutrino, neutrino mass, sterile neutrino, tritium beta decay, krypton, beyond standard model

Authors from the University of Münster

Hannen, Volker Michael
Professur für Kernphysik (Prof. Weinheimer)
Weinheimer, Christian
Professur für Kernphysik (Prof. Weinheimer)