Higher Trimethylamine- N-Oxide Plasma Levels with Increasing Age Are Mediated by Diet and Trimethylamine-Forming Bacteria

Rath S, Rox K, Kleine Bardenhorst S, Schminke U, Dörr M, Mayerle J, Frost F, Lerch MM, Karch A, Brönstrup M, Pieper DH, Vital M

Research article (journal) | Peer reviewed

Abstract

The gut microbiota-dependent metabolite trimethylamine-N-oxide (TMAO) is linked to an increased risk for cardiovascular diseases. Trimethylamine (TMA), which is subsequently oxidized to TMAO in the liver, is formed by intestinal bacteria via distinct biochemical routes from dietary precursors that are enriched in animal product-based foods. To get a full picture of the entire process of the diet > gut microbiota > TMAO axis, we quantified potential TMA-forming gut bacteria and plasma metabolites using gene-targeted assays and targeted metabolomics on a subsample (n = 425) of a German population-based cohort study. We specifically compared persons reporting daily meat intake with those that rarely or never consume meat. While meat intake did not predict TMAO plasma levels in our study, two major bacterial TMA-forming pathways were linked to the metabolite's concentration. Furthermore, advancing age was strongly associated with TMAO. Construction of a structural equation model allowed us to disentangle the different routes that promote higher TMAO levels with increasing age, demonstrating, for the first time, a functional role of gut microbiota in the process, where specific food items augmented abundances of TMA-forming bacteria that were associated with higher TMAO plasma concentrations. Analyses stratified by age showed an association between carotid intima-media thickness and TMAO only in individuals >65 of age, indicating that this group is particularly affected by the metabolite. IMPORTANCE Many cohort studies have investigated the link between diet and plasma TMAO levels, reporting incongruent results, while gut microbiota were only recently included into analyses. In these studies, taxonomic data were recorded that are not a good proxy for TMA formation, as specific members of various taxa exhibit genes catalyzing this reaction, demanding function-based technologies for accurate quantification of TMA-synthesizing bacteria. Using this approach, we demonstrated that abundances of the main components leading to TMAO formation, i.e., TMA precursors and TMA-forming bacteria, are uncoupled and not governed by the same (dietary) factors. Results emphasize that all levels leading to TMA(O) formation should be considered for accurate risk assessment, rejecting the simple view that diets rich in TMA precursors directly lead to increased plasma levels of this hazardous compound. The results can assist in developing strategies to reduce TMAO levels, specifically in the elderly, who are prone to TMAO-associated diseases.

Details about the publication

JournalmSystems
Volume6
Issue5
StatusPublished
Release year2021 (26/10/2021)
Language in which the publication is writtenEnglish
DOI10.1128/mSystems.00945-21
Keywordsaging; cardiovascular disease; diet; microbiota; trimethylamine

Authors from the University of Münster

Karch, André
Institute of Epidemiology and Social Medicine
Kleine Bardenhorst, Sven
Institute of Epidemiology and Social Medicine